Skip to main content
Log in

A cortical-bone structural geometry phantom: dental plaster as a convenient and radiologically similar fabrication material

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Areal bone mineral density (aBMD), derived from dual-energy X-ray absorptiometry (DXA) scanners is used routinely to infer bone strength. With DXA hip scans there is growing acceptance of the advantages of also measuring bone structural geometric variables, that complement conventional aBMD to improve understanding of bone modelling, remodelling and processes of metabolic bone disease. However, phantoms for assessing structural geometric variables from DXA scans are not widely available, unlike those for aBMD. This study describes the development of such a phantom, simulating the cortical shell of the human femoral neck, using dental plaster as a material radiologically similar to cortical bone. The mass attenuation coefficient of the dental plaster differed by < 1% from cortical bone, over the relevant energy range. Performance testing was carried out with DXA, to determine accuracy and precision of the phantom structural geometry, using its dimensions and composition as ‘gold standards’. Accuracy and precision of cortical structural geometry were poor when measured in a simulated 1mm-thick osteoporotic cortex (5.5% precision and 50% accuracy errors), but improved with increasing cortical thickness. This study demonstrates the limitations of DXA-based Hip Structure Analysis when applied to femora with thin cortices, and indicates improvements in the design of a phantom to better simulate such cortical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, J.S., Bartley, M.H., Tont, S.A. and Jenkins, J.P.,Skeletal changes in aging and disease, Clin Orthop., 49: 17–38, 1966.

    CAS  PubMed  Google Scholar 

  2. Beck, T.J., Ruff, C.B., Warden, K.E., Scott, W.W. Jr and Rao, G.U.,Predicting femoral neck strength from bone mineral data. A structural approach, Invest Radiol., 25: 6–18, 1990.

    Article  CAS  PubMed  Google Scholar 

  3. Beck, T.J., Looker, A.C., Ruff, C.B., Sievanen, H. and Wahner, H.W.,Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data, J Bone Miner Res., 15: 2297–2304, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Beck, T.J., Stone, K.L., Oreskovic, T.L., Hochberg, M.C., Nevitt, M.C., Genant, H.K. and Cummings, S.R.,Effects of current and discontinued estrogen replacement therapy on hip structural geometry: the study of osteoporotic fractures, J Bone Miner Res., 16: 2103–2110, 2001a.

    Article  CAS  PubMed  Google Scholar 

  5. Beck, T.J., Oreskovic, T.L., Stone, K.L., Ruff, C.B., Ensrud, K., Nevitt, M.C., Genant, H.K. and Cummings, S.R.,Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures, J Bone Miner Res., 16: 1108–1119, 2001b.

    Article  CAS  PubMed  Google Scholar 

  6. Bell, K.L., Garrahan, N., Kneissel, M., Loveridge, N., Grau, E., Stanton, M. and Reeve, J.,Cortical and cancellous bone in the human femoral neck: evaluation of an interactive image analysis system, Bone, 19: 541–548, 1996.

    Article  CAS  PubMed  Google Scholar 

  7. Bell, K.L., Loveridge, N., Power, J., Rushton, N. and Reeve, J.,Intracapsular hip fracture: increased cortical remodelling in the thinned and porous anterior region of the femoral neck, Osteoporos Int., 10: 248–257, 1999a.

    Article  CAS  PubMed  Google Scholar 

  8. Bell, K.L., Loveridge, N., Power, J., Garrahan, N., Stanton, M., Lunt, M., Meggitt, B.F. and Reeve, J.,Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis, J Bone Miner Res., 14: 111–119, 1999b.

    Article  CAS  PubMed  Google Scholar 

  9. Bell, K.L., Loveridge, N., Jordan, G.R., Power, J., Constant, C.R., and Reeve, J.,A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture, Bone, 27(2): 297–304, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Bohr, H. and Schaadt, O.Bone mineral content of the femoral neck and shaft: relation between cortical and trabecular bone, Calcif Tissue Int., 37: 340–344, 1985.

    Article  CAS  PubMed  Google Scholar 

  11. Boudousq V., Goulart D.M., Dinten J.M., de Kerleau C.C., Thomas E., Mares O. and Kotzki P.O.,Image resolution and magnification using a cone beam densitometer: optimizing data acquisition for hip morphometric analysis. Osteoporos Int., 16(7): 813–822, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Boutroy, S., Bouxsein, M.L., Munoz, F. and Delmas, P.,In vitro assessment of trabecular bone micro-architecture by high resolution peripheral quantitative computed tomography, J Clin Endocr & Metab., 90: 6508–6515, 2005.

    Article  CAS  Google Scholar 

  13. Bouxsein, M.L., Coan, B.S. and Lee, S.C.,Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia, Bone, 25: 49–54, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Brown, J.K., Qiao, Q.H., Weigert, J., Khoo, B.C.C. and Beck, T.J.,Improved precision of hip structure analysis using optimised projection images from segmented 3D CT scans of the hip, J Bone Miner Res., 20: (Suppl 1) S337, 2005.

    Google Scholar 

  15. Burr, D.B., Turner, C.H., Naick, P., Forwood, M.R., Ambrosius, W., Hasan, M.S. and Pidaparti, R.,Does microdamage accumulation affect the mechanical properties of bone?, J Biomech., 31: 337–345, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. Currey, J.D.,Bone strength: what are we trying to measure?, Calcif Tissue Int., 68: 205–210, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Felsenberg, D., Gowin, W., Diessel, E., Armbrust, S. and Mews, J.,Recent developments in DXA. Quality of new DXA/MXA-devices for densitometry and morphometry, Eur J Radiol., 20: 179–184, 1995.

    Article  CAS  PubMed  Google Scholar 

  18. Gere, J.M.,Mechanics of materials, 5th ed. Pacific Grove California: Brooks/Cole, pp323–4, 2003.

    Google Scholar 

  19. Hayes, W.C. and Bouxsein, M.L,Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk, In: Basic Orthopaedic Biomechanics (Second Ed.) Mow VC & Hayes WC (Eds), Lippincott-Raven, Philadelphia, Chapter 3, 69–111, 1997.

    Google Scholar 

  20. Hillier, T.A., Beck, T.J., Oreskovic, T., Rizzo, J.H., Pedula, K.L., Black, D., Stone, K.L., Cauley, J.A., Bauer, D.C., Taylor, B.C. and Cummings, S.R.,Predicting long-term hip fracture risk with bone mineral density and hip structure in postmenopausal women: the study of osteoporotic fractures (SOF), In: Twenty-fifth annual meeting of the American society for bone and mineral research. Minneapolis, Minnesota, USA: American society for bone and mineral research; p. S21, 2003.

    Google Scholar 

  21. ICRU Report 46,Photon, electron and neutron interaction data for body tissues, Table A1 Bethesda MD, USA, 1992.

  22. Jiang, Y., Zhao, J.J., Mitlak, B.H., Wang, O., Genant, H.K. and Eriksen, E.F.,Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure, J Bone Miner Res., 18(11): 1932–1941, 2003.

    Article  CAS  PubMed  Google Scholar 

  23. Jordan, G.R., Loveridge, N., Bell, K.L., Power, J., Rushton, N. and Reeve, J.,Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture?, Bone, 26(3): 305–313, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Kaptoge, S., Dalzell, N., Jakes, R.W., Wareham, N., Day, N.E., Khaw, K.T., Beck, T.J., Loveridge, N. and Reeve, J.,Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD, Osteoporos Int., 14: 941–949, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly, T.,Non-invasive methods of measuring bone morphology, 2006 Combined Meeting of the 3rd International Osteoporosis Foundation Asia-Pacific Regional Conference on Osteoporosis & 16th Annual Meeting of the Australian and New Zealand Bone Mineral Society. Queensland, Australia, p21, 2006.

  26. Khoo, B.C., Beck, T.J., Qiao, Q.H., Parakh, P., Semanick, L., Prince, R.L., Singer, K.P. and Price, R.I.,In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-centre clinical trials, Bone, 37: 112–121, 2005.

    Article  PubMed  Google Scholar 

  27. Kolta, S., Le Bras, A., Mitton, D., Bousson, V., de Guise, J.A., Fechtenbaum, J., Laredo, J.D., Roux, C. and Skalli, W.,Three dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual Xray absorptiometry device, Osteoporos Int., 16: 969–976, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Kuiper, J.W., Van Kuijk, C. and Grashuis, J.L.,Distribution of trabecular and cortical bone related to geometry: a quantitative computed tomography study of the femoral neck, Invest Radiol., 32: 83–89, 1997.

    Article  CAS  PubMed  Google Scholar 

  29. Martin, R.B. and Burr, D.B.,Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry, J Biomech., 17(3): 195–201, 1984.

    Article  CAS  PubMed  Google Scholar 

  30. Nurzenski, M.K., Briffa, N.K., Price, R.I., Khoo, B.C.C., Devine, A., Beck, T.J., Prince, R.L.,Geometric indices of bone strength are associated with physical activity and dietary calcium intake in healthy older women, J Bone Miner Res., 22(3): 416–424, 2007.

    Article  PubMed  Google Scholar 

  31. National Institute of Standards and Technology (NIST)Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z=1 to 92, http://physics.nist.gov/PhysRefData/ XrayMassCoef/cover.html (July 2004).

  32. Roschger, P., Fratzl, P., Eschberger, J. and Klaushofer, K.,Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies, Bone, 24: 619–621, 1998.

    Google Scholar 

  33. Roschger, P., Rinnerthaler, S., Yates, J., Rodan, G.A., Fratzl, P., Klaushofer, K.,Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women, Bone, 29(2): 185–191, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Ross, P.D., Genant, H.K., Davis, J.W., Miller, P.D. and Wasnich, R.D.,Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women, Osteoporos Int., 3(3): 120–126, 1993.

    Article  CAS  PubMed  Google Scholar 

  35. Riggs, B,L, Melton, L.J., Robb, R.A., Camp, J.J., Atkinson, E.J., Peterson, J.M., Rouleau, P.A., McCollough, C.H., Bouxsein, M.L. and Khosla, S.,Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites, J Bone Miner Res., 19(12): 1945–1954, 2004.

    Article  PubMed  Google Scholar 

  36. Sievanen, H., Oja, P. and Vuori, I.,Scanner-induced variability and quality assurance in longitudinal dual-energy x-ray absorptiometry measurements, Med Phys., 21: 1795–1805, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Singer, K.P., Edmondston, S., Day, R.E., Breidahl, P.D. and Price, R.I.,Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region, Bone, 17: 167–174, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Thorpe, J.A. and Steel, S.A.,Image resolution of the Lunar Expert-XL, Osteoporos Int., 10: 95–101, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. Woodard, H.Q. and White, D.R.,The composition of body tissues, Brit J Radiol., 59: 1209–1219, 1986.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshikawa, T., Turner, C.H., Peacock, M., Slemenda, C.W., Weaver, C.M., Teegarden, D., Markwardt, P. and Burr, D.B.,Geometric structure of the femoral neck measured using dualenergy x-ray absorptiometry, J Bone Miner Res., 9: 1053–1064, 1994.

    Article  CAS  PubMed  Google Scholar 

  41. Zebaze, R.M., Jones, A., Welsh, F., Knackstedt, M. and Seeman, E.,Femoral neck shape and the spatial distribution of its mineral mass varies with its size: Clinical and biomechanical implications, Bone, 37: 243–52, 2005.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoo, B.C.C., Price, R.I., Beck, T.J. et al. A cortical-bone structural geometry phantom: dental plaster as a convenient and radiologically similar fabrication material. Australas. Phys. Eng. Sci. Med. 30, 200–210 (2007). https://doi.org/10.1007/BF03178427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178427

Key words

Navigation