Skip to main content
Log in

Calculation of dose profiles in stereotactic Synchrotron microplanar beam radiotherapy in a tissue-lung phantom

  • Scientific Papers
  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Synchrotron x-ray beams with high fluence rate and highly collimated may be used in stereotactic radiotherapy of lung tumours. A bundle of converging monochromatic x-ray beams having uniform microscopic thickness i.e. (microplanar beams) are directed to the center of the tumour, delivering lethal dose to the target volume while sparing normal cells. The proposed technique takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerate the lethally irradiated endothelial cells. The sharply dropping lateral dose of a microbeam provides low scattered dose to the off-target interbeam volume. In the target volume the converging bundle of beams are closely spaced, and relatively high primary and secondary electron doses overlap and produce a high dose region between the beams. This higher and lower dose margins in the target volume allows precise targeting. The advantages of stereotactic microbeam radiotherapy will be lost as the dose between microbeams exceeds the tolerance dose of the dose limiting tissues. Therefore, it is essential to optimize the interbeam doses in off-target volume. The lateral and depth doses of 100 keV microplanar beams are investigated for a single beam and an array of converging microplanar beams in a tissue, lung and tissue-lung phantoms. The EGS5 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams. The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different energies, depths, bundle sizes, heights, widths and beam spacings. The interbeam dose is calculated at different depths and an isodose map of the phantom is obtained. An acceptable energy region is found for tissue and lung microbeam radiotherapy and a stereotactic microbeam radiotherapy model is proposed for a 4cm diameter and 1cm thick tumour on the lung phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bräuer-Krisch, E., Bravin, A., Lerch, M., Rosenfeld, A., Stepanek,J., Di Michiel, M., laissue, J.A.MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility. Med. Phys. 30(4) 583–590, 2003.

    Article  PubMed  Google Scholar 

  2. Bräuer-Krisch, E., Requardt, H., Régnard, P., Corde, S., Siegbahn, E., LeDuc, G., Brochard, T., Blattmann, H., Laissue, J., Bravin, A.New irradiation geometry for microbeam radiation therapy. Phys. Med. Bio. 50 3103–3111, 2005.

    Article  Google Scholar 

  3. Company, F.Z.,Stereotactic synchrotron microbeam radiotherapy. Australas, Phys. Eng. Sci. Med. 25 177–183, 2002.

    Article  Google Scholar 

  4. Company, F.Z. and Allen, B.J.,Monte Carlo calculation for microplanar beam radiography. Australas, Phys. Eng. Sci. Med. 23 86–92, 2000.

    Google Scholar 

  5. Company, F.Z, Allen, B.J. and Mino, C.,Contrast enhancement in microplanar beam radiography. Australas, Phys. Eng. Sci. Med. 22 121–126, 1999.

    CAS  Google Scholar 

  6. Company, F.Z. and Allen, B.J.,Calculation of microplanar beam dose profiles in tissue/lung/tissue phantom. Phys. Med. Biol. 43 2491–2501, 1998.

    Article  CAS  PubMed  Google Scholar 

  7. Company, F.Z. and Allen, B.J.,Measurements and Monte Carlo simulations of the fluence and dose characteristics of microplanar beams. Australas, Phys. Eng. Sci. Med. 19 217–224, 1996.

    CAS  Google Scholar 

  8. Hammersen, F., Hammersen, E., Osterkamp, U.,Structure and function of the endothelial cell Prog. appl. Microcirc., vol.1, pp. 1–16, 1983.

    Google Scholar 

  9. Hanson, L.A.,The calculation of scattering cross sections for polarized X-rays. Nuc.Inst.Meth A 243 583–598, 1986.

    Article  Google Scholar 

  10. Larsson, B.,Potentialities of synchrotron radiation in experimental and clinical radiation surgery. Acta. Radiol (Suppl 365) 58–64, 1983.

    Google Scholar 

  11. Namito, Y., Ban, S. and Hirayama, H.,Implementation of linearly-polarized photon scattering. Nucl. Inst. Meth A332 277–283, 1993.

    Article  CAS  Google Scholar 

  12. Nelson, W.R., James, C.L, Hirayama, H., Namito, Y., Bielajew, A. and Wilderman, S.Benchmark calculations for EGS5, 3rd international workshop on EGS, Tsukuba/Japan (KEK), SLAC-PUB-10752, 2004.

  13. Nelson, W. R., Hirayama, H., Rogers, D.W.O.,The EGS4 code system. Stanford Linear Accelerator Publication, Report-265, 1985.

  14. Orion, I., Rosenfeld, A.B., Dilmanian, F.A., Telang, F., Ren, B., Namito, Y.Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system. Phys. Med. Bio. 45 2495–2508, 2000.

    Article  Google Scholar 

  15. Rogers, W.O.,Low energy electron transport with EGS4, Nucl. Instr. Meth. A 227–535, 1984.

  16. Stepanek, J., Blattmann, H., Laissue, J.A., Lyubimova, N., Di Michiel, M., Slatkin, D.N.,Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool. Med. Phys. 27(7) 1664–1676, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Slatkin, D.N., Spanne, P., Dilmanian, F.A, Sandborg, M.,Microbeam radiation therapy, Med Phys 19 1395–1400, 1992.

    Article  CAS  PubMed  Google Scholar 

  18. Slatkin, D.N., Dilmanian, F.A., Gebbers, J.O., and Laissue, J.A.Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proc. Natl. Sci. USA 92: 1–6, 1995.

    Article  Google Scholar 

  19. Straile, W. E., Chase, H. B.,The use of elongated microbeams of X-rays for simulating the effects of cosmic rays in tissue Radiat Res. 18 65–75, 1963.

    Article  CAS  PubMed  Google Scholar 

  20. Van der Kogel, A.J.,Central nervous system radiation injury in small animal models Radiation Injury to the Nervous System, ed Gutin P H, Leibel S A and Sheline, G.E., (Raven, NY) pp 91–111, 1991.

  21. Withers, H.R., Taylor, J.M.G., Maciejewski, B.Treatment volume and tissue tolerance Int J Radiat Oncol Biol Phys. 14 751–760, 1988.

    CAS  PubMed  Google Scholar 

  22. Zeman, W.,Radiosensitivities of nervous tissues, in Fundamental Aspects of Radiosensitivities, Brookhaven Symp. Biol. 14 176–199, 1961.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Company, F.Z. Calculation of dose profiles in stereotactic Synchrotron microplanar beam radiotherapy in a tissue-lung phantom. Australas. Phys. Eng. Sci. Med. 30, 33–41 (2007). https://doi.org/10.1007/BF03178407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178407

Key words

Navigation