Skip to main content
Log in

Isolation and screening of marine associated bacteria from Tamil Nadu, Southeast coast of India for potential antibacterial activity

  • Ecological and Environmental Microbiology
  • Short Communications
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The bacteria associated with living surfaces are rich sources of bioactive metabolites. In the present study, 182 heterotrophic epibacterial colonies, isolated from seaweeds (44%), ascidians (30.2%), barnacles (10.4%) and molluscan egg mass (15.4%), were subjected to high throughput screening by cross streaking method against six human pathogenic bacteria,Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Proteus mirabilis andKlebsiella pneumoniae. The 137 epibacterial isolates, which showed activity against at least one human bacterial pathogen in cross streaking method, were further cultured and the ethyl acetate extract of the culture broth (100 μg/disc) was assayed for antibacterial activity through disc diffusion method. The four epibacterial colonies, BR1, EM13, EM14 and PC4, isolated from the barnacleBalanus amphitrite, seaweedEnteromorpha compressa, and ascidianPolyclinum constellatum showed broad spectral antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Acar J.F. (1980). The disc susceptibility test. In: Williams and Wilkens, Eds, Antibiotics in Laboratory Medicine (V), Academic Press, London, pp. 24–25.

    Google Scholar 

  • Armstrong E.L., Kenneth Y., Boyd G., Wright P.C., Burgess G.J. (2001). The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 46 (1–3) 37–40.

    Article  Google Scholar 

  • Austin B. (1988). Marine Microbiology, Cambridge Univ. Press, Melbourne.

    Google Scholar 

  • Azam F., Worden A.Z. (2004) Microbes, molecules and marine ecosystems. Science, 303: 1622–1624.

    Article  CAS  PubMed  Google Scholar 

  • Becerro M.A., Lopez N.I., Turon X., Uniz M.J. (1994). Antimicrobial activity and surface bacterial film in marine sponges, J. Exp. Mar. Biol. Ecol., 179: 195–205.

    Article  Google Scholar 

  • Benkendorff K. (1999). A critique of the requirements for environmental impact assessment: Shell Cove Marina, case study. Pac. Con. Biol., 5 (3): 214–223.

    Google Scholar 

  • Biard J.F., Guyot S., Roassalei C., Verbist J.F. (1994). Lepadiformine, a new marine cytotoxic alkaloid fromClavelina lepadiformis. Tetrahedron Lett., 35: 2691–2694.

    Article  CAS  Google Scholar 

  • Burgess J.G., Jordan E.M., Bregu M., Spragg A.M., Boyal K.G. (1999). Microbial antagonism, a neglected avenue of natural products research. J. Biotech., 70: 27–32.

    Article  CAS  Google Scholar 

  • Burkholder P.R., Burkholder L.M. (1958). Antimicrobial activity of horny corals. Science, 127: 1173–1174.

    Article  Google Scholar 

  • Bush K. (2004). Antibacterial drug discovery in the 21st century. Clin. Microbiol. Infect., 10 (4): 10–17.

    Article  PubMed  Google Scholar 

  • Chelossi E., Milanese M., Milano A., Pronzato R., Riccardi G. (2004). Characterisation and antimicrobial activity of epibiotic bacteria fromPetrosia ficiformis (Porifera, Demosporgiae). J. Exp. Mar. Biol. Ecol., 309: 21–33.

    Article  CAS  Google Scholar 

  • Costerton J.W. (1974). Structure and function of the cell envelope of Gram negative bacteria. Bacteriol. Rev., 38: 87–110.

    CAS  PubMed  Google Scholar 

  • Fenical W. (1993). Chemical studies of marine bacteria: Developing a new resource. Chem Rev., 93: 1673–1683.

    Article  CAS  Google Scholar 

  • Fieseler L., Horn M., Wagner M., Hentschel U. (2004). Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl. Environ. Microbiol., 70: 3724–3732.

    Article  CAS  PubMed  Google Scholar 

  • Gailliot F.P. (1998). Initial extraction and product capture. In: Cannell R.J.P., (Ed.), Methods in Biotechnology: Natural Products Isolation (4), Humana Press, USA, pp. 53–89.

    Chapter  Google Scholar 

  • Grossart H.P., Schlingloff A., Bernhard M., Simon M., Brinkhoff T. (2004). Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microb. Ecol., 47: 387–396.

    Article  CAS  Google Scholar 

  • Holmstrom C., Rittschof D., Kjelleberg S. (1992). Inhibition of settlement by larvae ofBalanus amphitrite andCiona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol., 58: 2111–2115.

    PubMed  CAS  Google Scholar 

  • Holmstrom C., Kjelleberg S. (1994). The effect of external biological factors on settlement of marine invertebrates and new antifouling technologies. Biofouling, 8: 147–160.

    Article  CAS  Google Scholar 

  • Holmstrom C., James S., Neilan B., White D., Kjelleberg S. (1998).Pseudo alteromonas tunicata sp. nov., a bacterium that produces antifouling agents Int. J. Syst. Bacteriol., 48: 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  • Isnansetyo A., Cui L., Hiramatsu K., Kamei Y. (2003). Antibacterial activity of 2,4-diacetylphloroglucinol produced byPseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistantStaphylococcus aureus. Int. J. Antimicrob. Agent, 22: 545–547.

    Article  CAS  Google Scholar 

  • James S.G., Holmstrom C., Kjelleberg S. (1996). Purification and characterization of a novel antimicrobial protein from a marine bacterium D2. Appl. Env. Microbiol., 62 (8): 2783–2788.

    CAS  Google Scholar 

  • Jayanth K., Jeyasekaran G., Jaya Shakila R. (2002). Isolation of marine bacteria, antagonistic to human pathogens. Ind. J. Mar. Sci., 31 (1): 45–51.

    Google Scholar 

  • Lemos M.L., Toranzo A.E., Barja J.L. (1985). Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds, Microb. Ecol., 11: 149–163.

    CAS  Google Scholar 

  • Lidita K., Anil A.C., Raghukumar S. (2003). Barnacle larval destination: piloting possibilities by bacteria and lectin interaction. J. Exper. Mar. Biol. Ecol., 289 (1): 1–13.

    Article  Google Scholar 

  • Margulis L. (1993). Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons. WH Freeman, New York.

    Google Scholar 

  • Maki J.S., Rittschof D., Costlow J.D., Mitchell R. (1988). Inhibition of attachment of larval barnacle,Balanus amphitrite, by bacterial surface films. Mar. Biol., 97: 199–206.

    Article  Google Scholar 

  • Maki J.S., Ding L., Stokes J., Kavouras J.H., Rittschof D. (2000). Substratum/bacterial interactions and larval attachment: Films and exopolysaccharides ofHalomonas marina (ATCC 25374) and their effect on barnacle cyprid larvae,Balanus amphitrite Darwin. Biofouling, 16 (2–4): 159–170.

    Article  CAS  Google Scholar 

  • Murugan A., Santhana Ramasamy M. (2003). Biofouling deterrent natural product from the ascidianDistaplia nathensis. Ind. J. Mar. Sci., 32: 162–164.

    Google Scholar 

  • Patil R., Jeyasekaran G., Shanmugam S.A., Jeyashalkila R. (2001). Control of bacterial pathogens associated with fish disease by antagonistic marine Actinomycetes isolated from marine sediments. Ind. J. Mar. Sci., 30 (4): 264–267.

    Google Scholar 

  • Pawlik, J.R. (1988). Larval settlement and metamorphosis sabellariid polychaetes, with special reference toPhragmatopoma lapidosa, a reef-building species, andSabellaria floridensis, a non-gregarious species. Bull. Mar. Sci., 43: 41–60.

    Google Scholar 

  • Pawlik J.R. (1992). Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Rev., 30: 273–335.

    Google Scholar 

  • Polz M.F., Harbison C., Cavanaugh C.M. (1999). Diversity and heterogeneity of epibiotic bacterial communities on the marine nematodeEubostrichus diane. Appl. Environ. Microbiol., 65: 4271–4275.

    CAS  PubMed  Google Scholar 

  • Proksch P., Edrada R.A., Ebel R. (2002). Drugs from the sea-current status and microbiological implications. Appl. Microbiol. Biotech., 59: 125–134.

    Article  CAS  Google Scholar 

  • Santhana Ramasamy M., Murugan A. (2005). Potential antimicrobial activity of marine molluscs from Tuticorin, southeast coast of India against 40 biofilm bacteria. J. Shell Fish Res., 24 (1): 243–252.

    Google Scholar 

  • Santhana Ramasamy M., Murugan A. (2007). Fouling deterrent chemical defense in three muricid gastropod egg masses from south east coast of India. Biofouling, 23 (4): 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt E.W. (2005). From chemical structure to environmental biosynthetic pathways: navigating marine invertebratebacteria associations. Trend Biotechnology, 23 (9): 437–440.

    Article  CAS  Google Scholar 

  • Spragg A.M., Brega M., Boyd K.G., Burgess J.G. (1998). Cross species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates after exposure to terrestrial bacteria. Lett. Appl. Micro., 27: 142–146.

    Article  Google Scholar 

  • Strahl E.D., Dobson W.E., Lundie L.L. (2002). Isolation and screening of Brittle-star associated bacteria for antibacterial activity Curr. Microbiol., 44: 450–459.

    CAS  Google Scholar 

  • Sutherland I.W. (1980). Polysaccharides in the adhesion of marine and freshwater bacteria. In: Berkeley R.C.W.et al. Eds, Microbiol Adhesion to Surfaces, Ellis Horwood, Chichester, pp. 329–338.

    Google Scholar 

  • Uzair B., Ahmed N., Ahmed V., Kousar F. (2006). A new antibacterial compound produced by indigenous marine bacteria; fermentation, isolation and biological activity. Nat. Prod. Res., 20 (14): 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  • Wahl M., Jensen P.R., Fenical W. (1994). Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog., Series 110: 45–57.

    Article  Google Scholar 

  • Wahl M. (1995). Bacterial epibiosis on Bahamian and Pacific ascidians. J. Exp. Mar. Biol. Ecol., 191: 239–255.

    Article  Google Scholar 

  • Wolfaardt G.M., Lawrence J.R., Korber D.R. (1999). Function of EPS. In: Wingender J., Neu T.R., Flemming H.-C., Eds, Microbial Extracellular Polymeric Substances: Characterization, Structure and Function, Springer-Verlag, New York, pp. 171–200.

    Google Scholar 

  • Zheng L., Yan X., Chen H., Lin W. (2005).Hymeniacidon perleve, associated bioactivePseudomonas sp. NJ-6-3-1. Appl. Biochem. Microbiol., 41 (1): 35–39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maniramakrishnan Santhana Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayalakshmi, S., Ramasamy, M.S., Murugesh, S. et al. Isolation and screening of marine associated bacteria from Tamil Nadu, Southeast coast of India for potential antibacterial activity. Ann. Microbiol. 58, 605–609 (2008). https://doi.org/10.1007/BF03175564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175564

Key words

Navigation