Skip to main content
Log in

Convergence of a three-dimensional crystalline motion to Gauss curvature flow

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We introduce a three-dimensional crystalline motion whose Wulff shape is a convex polyhedron (Wk). We prove that this crystalline motion converges to the motion by Gauss curvature in ℝ3 under the assumptions that the polyhedra (Wk) converge to the unit ball B3 and are symmetric with respect to the origin.

K. Ishii and H. M. Soner showed the convergence of the two-dimensional crystalline motion to the curve shortening flow by a kind of perturbed test function methods. We employ their method to prove our result under aid from the theory of Minkowski problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Andrews, Gauss curvature flow: the fate of the rolling stones. Inventione Mathematicae,138 (1999), 151–161.

    Article  MATH  Google Scholar 

  2. B. Andrews, Motion of hypersurfaces by Gauss curvature. Pacific J. Math.,195 (2000), 1–34.

    MATH  MathSciNet  Google Scholar 

  3. B. Andrews, Singularities in crystalline curvature flows. Asian J. Math.,6 (2002), 101–121.

    MATH  MathSciNet  Google Scholar 

  4. S. Angenent and M.E. Gurtin, Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal.,108 (1989), 323–391.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Bellettini, M. Novaga and M. Paolini, Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces Free Bound.,1 (1999), 39–55.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Bellettini, M. Novaga and M. Paolini, Characterization of facet breaking for nonsmooth mean curvature flow in the convex case. Interfaces Free Bound.,3 (2001), 415–446.

    MATH  MathSciNet  Google Scholar 

  7. B. Chow, Deforming convex hypersurfaces by then th root of the Gaussian curvature. J. Differential Geometry,22 (1985), 117–138.

    MATH  Google Scholar 

  8. L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Royal Soc. Edinburgh,111 (1989), 359–375.

    MATH  Google Scholar 

  9. W.J. Firey, Shapes of worn stones. Mathematika, 21 (1974), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature. World Congress of Nonlinear Analysis ’92 (ed. V. Lakshmikantham), Walter de Gruyter, 1996, 47–56.

  11. M.-H. Giga and Y. Giga, Stability for evolving graphs by nonlocal weighted curvature. Comm. in PDE,24 (1999), 109–184.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane. Arch. Rational Mech. Anal.,159 (2001), 295–333.

    Article  MATH  MathSciNet  Google Scholar 

  13. P.M. Girão, Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature. SIAM J. Numer. Anal.,32 (1995), 886–899.

    Article  MATH  MathSciNet  Google Scholar 

  14. P.M. Girão and R.V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math.,67 (1994), 41–70.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Ishii, Gauss curvature flow and its approximation. Free Boundary Problems: Theory and Applications, II (Chiba, 1999), 198–206, GAKUTO Internat. Ser. Math. Sci. Appl.,14, Gakkotosho, Tokyo, 2000.

  16. H. Ishii and T. Mikami, A two-dimensional random crystalline algorithm for Gauss curvature flow. Adv. Appl. Prob.,34 (2002), 491–504.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Ishii and T. Mikami, Convexified Gauss curvature flow of sets: a stochastic approximation. SIAM J. Math. Anal.,36 (2004), 552–579.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Ishii and H.M. Soner, Regularity and convergence of crystalline motion. SIAM J. Math. Anal.,30 (1998), 19–37.

    Article  MathSciNet  Google Scholar 

  19. R. Schneider, Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press, 1993.

  20. H.M. Soner, Motion of a set by the curvature of its boundary. J. Differential Equations,101 (1993), 313–372.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.E. Taylor, Constructions and conjectures in crystalline nondifferential geometry. Differential Geometry (eds. B. Lawson and K. Tanenblat), Pitman, 1991, 321–336.

  22. J.E. Taylor, Motion of curves by crystalline curvature. including triple junctions and boundary points, Differential Geometry (eds. R. Greene and S. T. Yau), AMS, 1993, 417–438.

  23. K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature. Comm. Pure Appl. Math.,38 (1985), 867–882.

    Article  MATH  MathSciNet  Google Scholar 

  24. T.K. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvatureV = Kα. SIAM J. Numer. Anal.,37 (2000), 500–522.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo K. Ushijima.

Additional information

The authors are partially supported by Grant-in-Aid for Encouragement of Young Scientists (Ushijima: No. 16740061, Yagisita: No. 16740099).

About this article

Cite this article

Ushijima, T.K., Yagisita, H. Convergence of a three-dimensional crystalline motion to Gauss curvature flow. Japan J. Indust. Appl. Math. 22, 443–459 (2005). https://doi.org/10.1007/BF03167494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167494

Key words

Navigation