Skip to main content
Log in

On volume-preserving crystalline mean curvature flow

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this work we consider the global existence of volume-preserving crystalline curvature flow in a non-convex setting. We show that a natural geometric property, associated with reflection symmetries of the Wulff shape, is preserved with the flow. Using this geometric property, we address global existence and regularity of the flow for smooth anisotropies. For the non-smooth case we establish global existence results for the types of anisotropies known to be globally well-posed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Angenent, Sigurd, Gurtin, Morton E.: Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108(4), 323–391 (1989)

    Article  MathSciNet  Google Scholar 

  2. Andrews, Ben: Volume-preserving anisotropic mean curvature flow. Indiana Univ. Math. J. 50(2), 783–827 (2001)

    Article  MathSciNet  Google Scholar 

  3. Almgren, Fred, Taylor, Jean E.: Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differ. Geom. 42(1), 1–22 (1995)

    Article  MathSciNet  Google Scholar 

  4. Almgren, Fred, Taylor, Jean E., Wang, Lihe: Curvature-driven flows: a variational approach. SIAM J. Control. Optim. 31(2), 387–438 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bellettini, Giovanni, Caselles, Vicent, Chambolle, Antonin, Novaga, Matteo: The volume preserving crystalline mean curvature flow of convex sets in \(\mathbb{R}^n\). Journal de Mathématiques Pures et Appliquées 92(5), 499–527 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bellettini, Giovanni: An introduction to anisotropic and crystalline mean curvature flow. Proc. Minisem. Evolut. Interface Sapporo 210, 102–159 (2010)

    Google Scholar 

  7. Bellettini, Giovanni, Novaga, Matteo, Paolini, Maurizio: Facet-breaking for three-dimensional crystals evolving by mean curvature. Interface Free Bound. 1(1), 39–55 (1999)

    Article  MathSciNet  Google Scholar 

  8. Barles, Guy, Soner, H Mete, Souganidis, Panagiotis E.: Front propagation and phase field theory. SIAM J. Control. Optim. 31(2), 439–469 (1993)

    Article  MathSciNet  Google Scholar 

  9. Chen, Yun Gang, Giga, Yoshikazu, Goto, Shun’ichi: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    Article  MathSciNet  Google Scholar 

  10. Cahn, John W., Hoffman, David W.: A vector thermodlnamics for anisotropic surfaces ii. curved and faceted surfaces. Acta Metall. 22(10), 1205–1214 (1974)

    Article  Google Scholar 

  11. Chambolle, Antonin: An algorithm for mean curvature motion. Interface. Free Bound. 6(2), 195–218 (2004)

    Article  MathSciNet  Google Scholar 

  12. Chambolle, A., Morini, M., Novaga, M., Ponsiglione, M.: Existence and uniqueness for anisotropic and crystalline mean curvature flows. J. Am. Math. Soc. (2019)

  13. Chambolle, Antonin, Morini, Massimiliano, Novaga, Matteo, Ponsiglione, Marcello: Generalized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE 12(3), 789–813 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chambolle, Antonin, Morini, Massimiliano, Ponsiglione, Marcello: Existence and uniqueness for a crystalline mean curvature flow. Commun. Pure Appl. Math. 70(6), 1084–1114 (2017)

    Article  MathSciNet  Google Scholar 

  15. Chambolle, Antonin, Novaga, Matteo: Implicit time discretization of the mean curvature flow with a discontinuous forcing term. Interface Free Bound. 10(3), 283–300 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Caffarelli, L.A., Salsa, S.: A geometric Approach to Free Boundary Problems, volume 68 of Graduate Studies in Mathematics. American Mathematical Soc., (2005)

  17. Evans, Lawrence Craig, Spruck, Joel: Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991)

    Article  MathSciNet  Google Scholar 

  18. Feldman, William M., Kim, Inwon: Dynamic stability of equilibrium capillary drops. Arch. Ration. Mech. Anal. 211(3), 819–878 (2014)

    Article  MathSciNet  Google Scholar 

  19. Giga, Mi.-Ho., Giga, Yoshikazu: Evolving graphs by singular weighted curvature. Arch. Ration. Mech. Anal. 141(2), 117–198 (1998)

    Article  MathSciNet  Google Scholar 

  20. Giga, Mi.-Ho., Giga, Yoshikazu: Generalized motion by nonlocal curvature in the plane. Arch. Ration. Mech. Anal. 159(4), 295–333 (2001)

    Article  MathSciNet  Google Scholar 

  21. Giga, Yoshikazu, Požár, Norbert: A level set crystalline mean curvature flow of surfaces. Adv. Differ. Equ. 21(7/8), 631–698 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Giga, Yoshikazu, Požár, Norbert: Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow. Commun. Pure Appl. Math. 71(7), 1461–1491 (2018)

    Article  MathSciNet  Google Scholar 

  23. Giga, Y., Požár, N.: Viscosity solutions for the crystalline mean curvature flow with a nonuniform driving force term. arXiv:2006.04375 [math.AP], (2020)

  24. Humphreys, J.E.: Reflection Groups and Coxeter Groups, volume 29. Cambridge University Press, Cambridge (1990)

  25. Kim, Inwon, Kwon, Dohyun: On mean curvature flow with forcing. Commun. Partial Differ. Equ. 45(5), 414–455 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kim, Inwon, Kwon, Dohyun: Volume preserving mean curvature flow for star-shaped sets. Calc. Var. Partial. Differ. Equ. 59(2), 81 (2020)

    Article  MathSciNet  Google Scholar 

  27. Kraft, Daniel: Measure-theoretic properties of level sets of distance functions. J. Geom. Anal. 26(4), 2777–2796 (2016)

    Article  MathSciNet  Google Scholar 

  28. Luckhaus, Stephan, Sturzenhecker, Thomas: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial. Differ. Equ. 3(2), 253–271 (1995)

    Article  MathSciNet  Google Scholar 

  29. Laux, Tim, Swartz, Drew: Convergence of thresholding schemes incorporating bulk effects. Interface Free Bound. 19(2), 273–304 (2017)

    Article  MathSciNet  Google Scholar 

  30. Mugnai, Luca, Seis, Christian, Spadaro, Emanuele: Global solutions to the volume-preserving mean-curvature flow. Calc. Var. Partial. Differ. Equ. 55(1), 18 (2016)

    Article  MathSciNet  Google Scholar 

  31. Soner, H.M.: Motion of a set by the curvature of its boundary. J. Differ. Equ. 101(2), 313–372 (1993)

    Article  MathSciNet  Google Scholar 

  32. Spohn, Herbert: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71(5–6), 1081–1132 (1993)

    Article  MathSciNet  Google Scholar 

  33. Takasao, Keisuke: Existence of weak solution for volume-preserving mean curvature flow via phase field method. Indiana Univ. Math. J. 66(6), 2015–2035 (2017)

    Article  MathSciNet  Google Scholar 

  34. Taylor, Jean E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588 (1978)

    Article  MathSciNet  Google Scholar 

  35. Taylor, J. E.: Constructions and conjectures in crystalline nondifferential geometry. In: Differential Geometry, volume 52 of Pitman Monogr. Surveys Pure Appl. Math., pp. 321–336. Longman Sci. Tech., Harlow (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyun Kwon.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

IK is supported by NSF DMS 1900804 and the Simons Foundation Fellowship. NP is supported by JSPS KAKENHI Wakate Grant (No. 18K13440)

Appendices

Appendix A: Geometric properties

Here we show several geometric properties used in the paper. First we show that \({{\mathcal {P}}}_\phi \) given below is a root system:

$$\begin{aligned} {{\mathcal {P}}}_\phi := \{p \in {{\mathbb {S}}}^{N-1} : \phi = \phi \circ \Psi _p \hbox { and } \psi = \psi \circ \Psi _p \}. \end{aligned}$$

By definition of \({{\mathcal {P}}}_\phi \) and the fact that \(\Psi _p = \Psi _{-p}\), it can be shown that

$$\begin{aligned} p \in {{\mathcal {P}}}_\phi , \quad \hbox { if and only if } -p \in {{\mathcal {P}}}_\phi \end{aligned}$$
(A.1)

Recall the reflection with respect to a hyperplane containing the origin

$$\begin{aligned} \Psi _{p} = \Psi _{\Pi _p(0)} = I - 2 p \otimes p \end{aligned}$$

is a symmetric unitary operator and an involution. Furthermore, compositions of three (or any odd number of) reflections are also reflections. From this observation, we show that if p and q are directions of reflection symmetry, then \(\pm \Psi _{q}(p)\) is also a direction of reflection symmetry.

Lemma A.1

If \(p, q \in {{\mathcal {P}}}_\phi \), then \(\pm \Psi _{q}(p) \in {{\mathcal {P}}}_\phi \). In particular, \({{\mathcal {P}}}_\phi \) is a root system.

Proof

As \(\Psi _{q}\) is an involution and symmetric, we have

$$\begin{aligned} \Psi _{q} \Psi _{p} \Psi _{q} x&= \Psi _{q} \left( \Psi _{q} x - 2 ( \Psi _{q} x \cdot p) p \right) = x - 2 (x \cdot \Psi _{q} p) \Psi _{q} p = \Psi _{\Psi _{q}p} x. \end{aligned}$$

From \(| \Psi _{q}(p) | = | p | = 1\) and (A.1), we conclude that \(\pm \Psi _{p}(q) \in {{\mathcal {P}}}_\phi \). \(\square \)

Lemma A.2

The perimeter of a set E satisfying (1.4) and \({{\mathcal {B}}}_r \subset E \subset B_R(0)\) for some \(r>0\) and \(R>0\) is bounded by \(C = C({{\mathcal {P}}}, r, R)>0\).

Proof

Set \(F:= B_R(0) \setminus {{\mathcal {B}}}_r\). There exists a finite number of points \(x_i, 1 \le i \le m\) in F such that

$$\begin{aligned} F \subset \bigcup _{1 \le i \le m} B_r(x_i). \end{aligned}$$

As E is a Lipschitz domain from Theorem 2.2, it suffices to show that \({{\mathcal {H}}}^{N-1}(\partial E \cap B_r(x_i))\) is uniformly bounded for \(1 \le i \le m\). Here, \({{\mathcal {H}}}^{N-1}\) is the \((N-1)\)-dimensional Hausdorff measure. Either \(\partial E \cap B_r(x_i)\) is empty or it can be represented by a Lipschitz graph. In particular, from the cone condition in Theorem 2.2, the Lipschitz constant only depends on r and \({{\mathcal {P}}}\) and thus we conclude. \(\square \)

Next, let us recall the uniform density from [27, Definition 4], which is, roughly speaking, a quantitative definition for Ahlfors regular sets. Let \(c \in (0,1)\) and \(s_0 > 0\). We say that \(\Omega \subset {{\mathbb {R}}^N}\) has \((s_0, c)\)-uniform lower density if the estimate

$$\begin{aligned} 0 < c \le \frac{|B_s(x) \cap \Omega |}{|B_s(x)|} \end{aligned}$$

holds for all \( s \in (0, s_0)\) and \(x \in \partial \Omega \). Similarly, \(\Omega \) is said to have \((s_0, c)\)-uniform upper density if

$$\begin{aligned} \frac{|B_s(x) \cap \Omega |}{|B_s(x)|} \le 1 - c <1. \end{aligned}$$

When both conditions are satisfied together, \(\Omega \) has \((s_0, c)\)-uniform density.

Lemma A.3

[27, Theorem 4]. Let \(\Omega \subset {{\mathbb {R}}^N}\) have \((s_0, c)\)-uniform density. Then

$$\begin{aligned} | \{ x \in {{\mathbb {R}}^N}: 0< d(x, \Omega ) < s \} | \le C \left( 1 + \tfrac{1}{c} \right) ^{\frac{N-1}{N}} {\text {Per}}(\Omega ) s \hbox { for all } s \in (0, s_0). \end{aligned}$$

Here, C is a dimensional constant.

As a consequence of Theorem 2.2 and the above lemma, we conclude.

Proposition A.4

Suppose that E satisfies (1.4) and \({{\mathcal {B}}}_r \subset E \subset B_R(0)\) for some \(r>0\) and \(R>0\). Then, there exists \(c = c({{\mathcal {P}}}, r, R)>0\) such that

$$\begin{aligned} | \{ x \in {{\mathbb {R}}^N}: 0< d(x, E) < s \} | \le c s \end{aligned}$$
(A.2)

for all \(s \in (0,r)\). Here, \({{\mathcal {B}}}_r\) is given in (2.7)

Proof

We claim that E has \((r, \sigma _3^N)\)-uniform density for \(\sigma _3\) given in (2.6). For all \(s \in (0,r)\), E has an s-interior cone and an s-exterior cone from Theorem 2.2. As s-interior and exterior cones are contained in a ball of radius s and contains a ball of radius \(\sigma _3 s\) for \(\sigma _3\) given in (2.6), we conclude that

$$\begin{aligned} \sigma _3^N \le \frac{|B_s(x) \cap E|}{|B_s(x)|} \le 1 - \sigma _3^N. \end{aligned}$$

Then, we apply Lemma A.3 and Lemma A.2 to conclude (A.2). \(\square \)

Lemma A.5

Suppose that a bounded set E satisfies (1.4) and \({{\mathcal {B}}}_r \subset E\) for some \(r>0\). Then, there exist \(C = C({{\mathcal {P}}})>0\) and \(\varepsilon _0 = \varepsilon _0({{\mathcal {P}}}, r)>0\) such that

$$\begin{aligned} d(x, {{\mathcal {I}}}^- ) \le C \varepsilon \hbox { and } d(x, ({{\mathcal {I}}}^+)^{\textsf {c}}) \le C \varepsilon \quad \hbox { for all } x \in \partial E \hbox { and for all } \varepsilon \in (0, \varepsilon _0) \end{aligned}$$
(A.3)

where \({{\mathcal {I}}}^\pm := \{ x \in {{\mathbb {R}}^N}: {\text {sd}}(x, E) < \pm \varepsilon \}\).

Proof

Set \(\varepsilon _0:= \sigma _3 r/2\) and fix \(x \in \partial E\). Theorem 2.2 yields that E contains \(x-{{\,\textrm{Cone}\,}}_r(A)\) given by some basis \(A \subset {{\mathcal {P}}}\). This cone contains a ball of radius \(s\sigma _3\) centered at \(x_s := x - \frac{s}{2N} \sum _{p\in A} p\) for any \(0 < s \le r\). For \(\varepsilon \in (0, \varepsilon _0)\), choose \(s := 2\varepsilon /\sigma _3\). As \(B_{2\varepsilon }(x_s)\) is contained in E, we have \(d(x_s, \partial E) > \varepsilon \) and thus \(x_s \in {{\mathcal {I}}}^-\). This yields that

$$\begin{aligned} d(x, {{\mathcal {I}}}^-) \le |x - x_s| \le \frac{s}{2} = \frac{\varepsilon }{\sigma _3}. \end{aligned}$$
(A.4)

The second inequality can be handled similarly. \(\square \)

A function \(f : {{\mathbb {R}}^N}\rightarrow {{\mathbb {R}}}\) is called positively one-homogeneous if

$$\begin{aligned} f(s\xi ) = s f(\xi ) \qquad \text {for all } \xi \in {{\mathbb {R}}}^N \text { and } s \ge 0. \end{aligned}$$
(A.5)

Recall the definition of the Wulff shape \(W_f\) in (1.1).

Lemma A.6

For positively one-homogeneous functions \(f, g : {{\mathbb {R}}^N}\rightarrow {{\mathbb {R}}}\) with \(f \le g\) we have

$$\begin{aligned} {{\overline{B}}}_{m_f}(0) \subset W_f \subset W_g \subset {{\overline{B}}}_{M_g}(0), \end{aligned}$$

Here, \(m_f\), \(M_g\) are given in (5.6).

Proof

\(W_f \subset W_g\) is clear from the definition. For the ordering with \({{\overline{B}}}_{m_f}(0)\) and \({{\overline{B}}}_{M_g}(0)\), we note that \({{\overline{B}}}_r(0) = W_h\) for \(h(p) := r|p|\) for any \(r \ge 0\). \(\square \)

Appendix B: Technical lemmas

Lemma B.1

Suppose that \(u_k: {{\mathbb {R}}^N}\times {{\mathbb {R}}}\rightarrow {{\mathbb {R}}}\) is a locally-bounded sequence of upper semi-continuous functions and let \(u := \mathop {\lim \,\sup {}^*}\limits \nolimits _{k\rightarrow \infty } u_k\). Let \(r_k \in C({{\mathbb {R}}})\) be a sequence of non-negative continuous functions such that \(r_k \rightarrow r\) locally uniformly and let \(K \subset {{\mathbb {R}}^N}\) be a nonempty compact set. Then

$$\begin{aligned} \sup _{x + r(t) K} u(\cdot , t) = \mathop {\lim \,\sup }\limits _{\begin{array}{c} k\rightarrow \infty \\ (x_k,t_k) \rightarrow (x,t) \end{array}} \sup _{x_k + r_k(t_k)K} u_k(\cdot , t_k). \end{aligned}$$
(B.1)

Proof

Fix (xt) and suppose \((x_k, t_k) \rightarrow (x,t)\).

Choose \(y \in x + r(t) K\) such that \(u(y, t) = \sup _{x + r(t) K} u(\cdot , t)\) and \(y_k \in x_k + r_k(t_k) K\) such that \(u_k(y_k, t_k) = \sup _{x_k + r_k(t_k) K} u(\cdot , t_k)\).

Since \(\{y_k\}\) is clearly bounded, we can consider a subsequence indexed by \(k_m\) so that \(y_{k_m} \rightarrow z\) for some z and \(\lim _m u_{k_m}(y_{k_m}, t_{k_m}) = \mathop {\lim \,\sup }\limits _k u_k(y_k, t_k)\). Suppose that \(r(t) > 0\). We have \(r_{k_m}(t_{k_m}) > 0\) for large m and therefore

$$\begin{aligned} \frac{r(t)}{r_{k_m}(t_{k_m})}(y_{k_m} - x_{k_m}) \in r(t) K. \end{aligned}$$

Since the left-hand side converges to \(z - x\), we have \(z - x\in r(t) K\). On the other hand, if \(r(t) = 0\) then \(r_{k_m}(t_{k_m}) \rightarrow 0\) and hence \(z - x = \lim _m (y_{k_m}- x_{k_m}) = 0 \in r(t) K\). This implies that \(u(z, t) \le u(y, t)\). Since \(u = \mathop {\lim \,\sup {}^*}\limits u_k\), we conclude that

$$\begin{aligned} \mathop {\lim \,\sup }\limits _k u_k(y_k, t_k) = \lim _m u_{k_m}(y_{k_m}, t_{k_m}) \le u(z, t) \le u(y, t). \end{aligned}$$

As the sequence \(\{(x_k, t_k)\}\) was arbitrary, we conclude that the inequality \(\ge \) holds in (B.1).

To show the equality, we consider a maximizing sequence, i.e., we choose \((y_k, t_k) \rightarrow (y, t)\) such that \(u(y,t) = \mathop {\lim \,\sup }\limits _k u_k(y_k, t_k)\). If \(r(t) > 0\), we set \(x_k = y_k - \frac{r_k(t_k)}{r(t)} (y - x)\). Clearly \(y_k \in x_k + r_k(t_k) K\) and \(x_k \rightarrow x\). If \(r(t) = 0\), it is sufficient to take any \(x_k \in y_k - r_k(t_k) K\) and we still have \(x_k \rightarrow x = y\). We then have

$$\begin{aligned} \mathop {\lim \,\sup }\limits _k \sup _{x_k +r_k(t_k)K} u_k(\cdot , t_k) \ge \mathop {\lim \,\sup }\limits u_k(y_k, t_k) = u(y, t) = \sup _{x + r(t) K} u(\cdot , t). \end{aligned}$$

This finishes the proof. \(\square \)

Lemma B.2

Suppose that \(\psi , \phi : {{\mathbb {R}}^N}\rightarrow [0, \infty )\) are positively one-homogeneous convex functions, with zero only at \(p=0\) and suppose that \(\phi \in C^2({{\mathbb {R}}^N}{\setminus } \{0\})\). Suppose that u is a viscosity subsolution of \(u_t = \psi (-Du) (-{\text {div}}D\phi (-Du) + \lambda )\) for some \(\lambda \in C({{\mathbb {R}}})\). Then for any positive \(R \in C^1({{\mathbb {R}}})\), \({{\widehat{u}}}(\cdot ; R)\) from (3.3) is a viscosity subsolution of \(u_t = \psi (-Du) (-{\text {div}}D\phi (-Du) + \lambda + R')\).

Proof

Without loss of generality we may assume that u is upper semi-continuous. To simplify the notation we write \({{\widehat{u}}}(x, t)\) instead of \({{\widehat{u}}}(x, t; R)\). Let \(\varphi \) be a smooth test function such that \({{\widehat{u}}}- \varphi \) has a maximum 0 at \(({\hat{x}}, {\hat{t}})\). Recall that we need to show \(\varphi _t \le F^*({\hat{t}}, D\varphi , D^2\varphi )\) at \(({\hat{x}}, {\hat{t}})\), where \(F(t, p, X)\,{:=}\,\psi (-p)\left( \!{{\,\textrm{trace}\,}}[D_p^2\phi (-p) X]\,{+}\,\lambda \,{+}\,R'\!\right) \), \(p \ne 0\).

Due to the assumption we have

$$\begin{aligned} \varphi (x,t)\ge {{\widehat{u}}}(x,t)= \max _{x - R(t)W_\psi } u(\cdot , t) \end{aligned}$$

with equality at \(({\hat{x}}, {\hat{t}})\). We now fix \({\hat{y}} \in {\hat{x}} - R({\hat{t}}) W_\psi \) such that \(u({\hat{y}}, {\hat{t}}) = {{\widehat{u}}}({\hat{x}}, {\hat{t}})\). Note that from the definition \(R(t) \tfrac{{\hat{x}} - {\hat{y}}}{R({\hat{t}})} \in R(t) W_\psi \) and so \(x - R(t) \tfrac{{\hat{x}} - {\hat{y}}}{R({\hat{t}})} \in x - R(t) W_\psi \), which yields

$$\begin{aligned} \varphi (x,t) \ge {{\widehat{u}}}(x,t) \ge u(x - R(t) \tfrac{{\hat{x}} - {\hat{y}}}{R({\hat{t}})}, t) \end{aligned}$$

for all xt with equality at \(({\hat{x}}, {\hat{t}})\). Thus we deduce

$$\begin{aligned} {\hat{\varphi }}(x, t) := \varphi (x + R(t) \tfrac{{\hat{x}} - {\hat{y}}}{R({\hat{t}})},t) \ge u(x, t) \end{aligned}$$

for all x, t with equality at \(({\hat{y}}, {\hat{t}})\). In particular, \(u - {\hat{\varphi }}\) has a local maximum at \(({\hat{y}}, {\hat{t}})\).

Now a direct computation yields \(D{\hat{\varphi }}({\hat{y}}, {\hat{t}}) = D\varphi ({\hat{x}}, {\hat{t}})\), \(D^2 {\hat{\varphi }}({\hat{y}}, {\hat{t}}) = D^2 \varphi ({\hat{x}}, {\hat{t}})\) and

$$\begin{aligned} {\hat{\varphi }}_t ({\hat{y}}, {\hat{t}})= \varphi _t ({\hat{x}}, {\hat{t}})+ D\varphi ({\hat{x}}, {\hat{t}})\cdot \tfrac{{\hat{x}} - {\hat{y}}}{R({\hat{t}})} R'({\hat{t}}), \end{aligned}$$
(B.2)

If \(D\varphi ({\hat{x}}, {\hat{t}} ) = 0\) this simply yields \(\hat{\varphi }_t({\hat{y}}, {\hat{t}})= \varphi _t({\hat{x}}, {\hat{t}})\) and we conclude that the correct viscosity solution condition is satisfied for \(\varphi \) since u is a viscosity solution with right-hand side \(F(t, p, X) - \psi (-p) R'(t)\) by assumption.

Now suppose that \(D\varphi ({\hat{x}}, {\hat{t}} ) \ne 0\). As

$$\begin{aligned} \varphi (x, {\hat{t}}) \ge {{\widehat{u}}}(x, {\hat{t}}) \ge u({\hat{y}}, {\hat{t}}) = \varphi ({\hat{x}}, {\hat{t}}) \qquad \text {for }x \in {\hat{y}} + R({\hat{t}}) W_\psi , \end{aligned}$$

we deduce that \( {\hat{y}} + R({\hat{t}})W_{\psi } \subset \{\varphi (\cdot , {\hat{t}}) \ge \varphi ({\hat{x}}, {\hat{t}})\}\). In particular, \(-D\varphi ({\hat{x}}, {\hat{t}})\) is an outer normal to \(W_\psi \) at \(({\hat{x}} - {\hat{y}})/ R({\hat{t}})\). Therefore, by definition of \(W_\psi = \{x : x\cdot p \le \psi (p) \ \forall p\}\) and the fact that \(\psi \) is positively one-homogeneous and convex,

$$\begin{aligned} -D\varphi ({\hat{x}}, {\hat{t}}) \cdot \tfrac{{\hat{x}} - {\hat{y}}}{R({\hat{t}})} = \psi (-D\varphi ({\hat{x}}, {\hat{t}})). \end{aligned}$$

which yields together with (B.2)

$$\begin{aligned} {\hat{\varphi }}_t ({\hat{y}}, {\hat{t}})= \varphi _t ({\hat{x}}, {\hat{t}})- \psi (-D\varphi ({\hat{x}}, {\hat{t}})) R'({\hat{t}}), \end{aligned}$$

again yielding the correct viscosity condition for \(\varphi \) at \(({\hat{x}}, {\hat{t}})\) from the viscosity solution condition that \(\hat{\varphi }\) satisfies at \(({\hat{y}}, {\hat{t}})\).

We conclude that \({{\widehat{u}}}\) is a viscosity subsolution of \(u_t = \psi (-Du) (-{\text {div}}D\phi (-Du) + \lambda + R')\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Kwon, D. & Požár, N. On volume-preserving crystalline mean curvature flow. Math. Ann. 384, 1–42 (2022). https://doi.org/10.1007/s00208-021-02286-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02286-4

Navigation