Skip to main content
Log in

Very slow dynamics for some reaction-diffusion systems of the activator-inhibitor type

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We consider a bistable reaction-diffusion equation coupled with a time-dependent constrained condition

$$\left\{ \begin{gathered} u_t = \varepsilon ^2 u_{xx} + \sigma ^{ - 2} [u(1 - u^2 ) - \xi ] \hfill \\ x \in I = (0,1), t > 0, \hfill \\ \xi _t = \int_I {udx} - \gamma \xi \hfill \\ \end{gathered} \right.$$

where γ, δ and ε are positive constants. This equation lies in a framework of activator-inhibitor models which arise in biology. When ε is sufficiently small, it is found that internal layers of widthO(ε) appear in theu-component under the zero-flux boundary conditions, and that these layers propagate very slowly with velocityO(e A/ε) for some positive constantA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alikakos, P.W. Bates, and G. Fusco, Slow motion for the Cahn-Hilliard equation in one space dimension. J. Differential Equations,90 (1991), 81–135.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Bronzard and R.V. Kohn, On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl. Math.,43 (1990), 983–997.

    Article  MathSciNet  Google Scholar 

  3. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys.,28 (1957), 258–267.

    Article  Google Scholar 

  4. J. Carr and R.L. Pego, Invariant manifold for metastable patterns inu t = ε2 u x + ƒ(u). Proc. Roy. Soc. Edinburgh,116A (1991), 113–160.

    Google Scholar 

  5. J. Carr and R.L. Pego, Metastable patterns in solutions ofu t = ε2 u x + ƒ(u). Comm. Pure Appl. Math.,42 (1989), 523–576.

    Article  MATH  MathSciNet  Google Scholar 

  6. Xinfu Chen, Generation and propagation of interfaces in reaction-diffusion systems. IMA, preprint series #708.

  7. X.-Y. Chen, Dynamics of interfaces in reaction-diffusion systems. Hiroshima Math. J.,21 (1991), 47–83.

    MATH  MathSciNet  Google Scholar 

  8. P.C. Fife and J.B. McLeod, The approach of solutions nonlinear diffusion equation to travelling front solutions. Arch. Rational Mech. Anal.,65 (1977), 335–361.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Fujii, Y. Nishiura, and Y. Hosono, On the structure of multiple existence of stable stationary solutions in systems of reaction diffusion equations—a survey. Patterns and Waves (Eds. Nishida, Mimura, and Fujii), North-Holland, Amsterdam, 1987, 157–220.

    Google Scholar 

  10. G. Fusco, A geometric approach to the dynamics ofu t = ε2 u x + ƒ(u) for small ε. Preprint, 1990.

  11. G. Fusco and J. Hale, Slow motion manifold, dormant instability and singular perturbations. J. Dynamics Differential Equations,1 (1989), 75–94.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetika,12 (1972), 30–39.

    Article  Google Scholar 

  13. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Springer-Verlag, Berlin, 1981.

    MATH  Google Scholar 

  14. M. Mimura, S.-I. Ei and M. Kuwamura, Phase separation in activator-inhibitor medium. Forma,4 (1989), 65–73.

    Google Scholar 

  15. M. Mimura and J.D. Murray, Spatial structures in a model substrate-inhibition reaction diffusion system. Z. Naturforsch.,33C (1978), 580–586.

    Google Scholar 

  16. M. Mimura, M. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with small parameter. SIAM J. Math. Anal.,11 (1980), 613–631.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal.,13 (1982), 555–593.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Nishiura, and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations. SIAM J. Math. Anal.,18 (1987), 1726–1770.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Nishiura, and H. Fujii, SLEP method to the stability of singularly perturbed solutions with multiple transition layers in reaction-diffusion systems. Dynamics of Infinite Dimensional Systems (Eds. J.K. Hale and S.N. Chow), Springer-Verlag, Berlin, 1987, 211–230.

    Google Scholar 

  20. A. Turing, The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London, B237 (1952), 37–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kuwamura, M., Ei, S.I. & Mimura, M. Very slow dynamics for some reaction-diffusion systems of the activator-inhibitor type. Japan J. Indust. Appl. Math. 9, 35–77 (1992). https://doi.org/10.1007/BF03167194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167194

Key words

Navigation