Skip to main content
Log in

Solid-state magnetic resonance studies of polyaniline as a radical scavenger

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2005

Abstract

The first detailed study of polyaniline (PANI) and reduced PANI (R-PANI) before and after reaction with the stable organic free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) by using solidstate13C CP MAS (cross-polarization magic-angle spinning), NQS (nonquaternary suppressed) and CPPI (cross-polarization phase inversion) nuclear magnetic resonance techniques is reported. These techniques reveal relatively subtle structural changes that occur upon reaction with DPPH free radicals and confirm the radical scavenging ability of PANI. The integrated intensity of the PANI CP MAS spectrum after reaction with DPPH is about 8% larger than that of PANI and this cannot be explained by an oxidation process alone. The increase is attributed to a decrease in the polaron concentration in the polymer, which is consistent with electron paramagnetic resonance (EPR) data that show a decrease of the EPR signal intensity after reaction of chemically synthesized PANI with DPPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duer M.L.: Solid-State NMR Spectroscopy: Principles and Applications. Oxford: Blackwell 2002.

    Google Scholar 

  2. Heeger A.J.: Synth. Met.125, 23 (2002)

    Article  Google Scholar 

  3. Kaplan S., Conwell E.M., Richter A.F., MacDiarmid A.G.: J. Am. Chem. Soc.110, 7647–7651 (1988)

    Article  Google Scholar 

  4. Hjertberg T., Sandberg M., Wennerstrom O., Lagerstedt I.: Synth. Met.21, 31–39 (1987)

    Article  Google Scholar 

  5. Kababya S., Appel M., Haba Y., Titelman G.I., Schmidt A.: Macromolecules32, 5357–5364 (1999)

    Article  ADS  Google Scholar 

  6. Zeng X.-R., Ko T.-M.: Polymer39, 1187–1195 (1998)

    Article  Google Scholar 

  7. Espe M.P., Mattes B.R., Schaefer J.: Macromolecules30, 6307–6312 (1997)

    Article  ADS  Google Scholar 

  8. Mathew R., Mattes B.R., Espe M.P.: Synth. Met.131, 141–147 (2002)

    Article  Google Scholar 

  9. Raghunathan A., Rangarajan G., Trivedi D.C.: Synth. Met.81, 39–47 (1996)

    Article  Google Scholar 

  10. Hjertberg T., Salaneck W.R., Lundstrom I., Somasiri N.L.D., MacDiarmid A.G.: J. Polym. Sci.23, 503–508 (1985)

    Google Scholar 

  11. Kolbert A.C., Caldarelli S., Thier K.F., Sacricifitci N.S., Cao Y., Heeger A.J.: Phys. Rev. B51, 1541–1545 (1995)

    Article  ADS  Google Scholar 

  12. Goddard Y.A., Vold R.L., Hoatson G.L.: Macromolecules36, 1162–1169 (2003)

    Article  ADS  Google Scholar 

  13. Menardo C., Nechtschein M., Rousseau A., Travers J.P., Hany P.: Synth. Met.25, 311–322 (1988)

    Article  Google Scholar 

  14. Hagiwara T., Yamaura M., Iwata K.: Synth. Met.26, 195–201 (1988)

    Article  Google Scholar 

  15. Dunn J.R., Scalan J.: The Chemistry and Physics of Rubber Like Substances (Bateman L., ed.), p. 663. London: Maclaren and Sons 1963.

    Google Scholar 

  16. Helaly F.M., Darwich W.M., Abd El-Ghaffar M.A.: Polym. Degrad. Stab.64, 251 (1999)

    Article  Google Scholar 

  17. Gizdavic-Nikolaidis M., Travas-Sejdic J., Bowmaker G.A., Cooney R.P., Kilmartin P.A.: Synth. Met.140, 225 (2004)

    Article  Google Scholar 

  18. Gizdavic-Nikolaidis M., Travas-Sejdic J., Bowmaker G.A., Cooney R.P., Thompson C., Kilmartin P.A.: Curr. Appl. Phys.4, 347–350 (2004)

    Article  Google Scholar 

  19. Madden J.D., Cush R.A., Kanigan T.S., Hunter I.W.: Synth. Met.113, 185 (2000)

    Article  Google Scholar 

  20. Hutchison A.S., Lewis T.W., Moulton S.E., Spinks G.M., Wallace G.G.: Synth. Met.113, 121 (2000)

    Article  Google Scholar 

  21. Pernaut J.-M., Reynolds J.R.: J. Phys. Chem. B104, 4080 (2000)

    Article  Google Scholar 

  22. Kotwal A., Schmidt C.E.: Biomaterials22, 1055 (2001)

    Article  Google Scholar 

  23. Rivers T.J., Hudson T.W., Schmidt C.E.: Adv. Funct. Mater.12, 33 (2002)

    Article  Google Scholar 

  24. Zhang Z., Roy R., Dugre F.J., Tessier D., Dao L.H.: J. Biomed. Mater. Res.57, 63 (2001)

    Article  Google Scholar 

  25. Lim V.W.L, Kang E.T., Neoh K.G.: Synth. Met.119, 261 (2001)

    Article  Google Scholar 

  26. Rice-Evans C.: Curr. Med. Chem.8, 797 (2001)

    Google Scholar 

  27. Sawai Y., Moon J.H.: J. Agric. Food Chem.48, 6247 (2000)

    Article  Google Scholar 

  28. Silva A.M.S., Santos C.M.M., Cavaleiro J.A.S., Tavares H.R., Borges F., Silva F.A.M.: Magn. Reson. Food Sci.262, 110 (2001)

    Article  Google Scholar 

  29. Hristea E.N., Hillebrand M., Radutiu A.C., Caldararu H., Caproiu M.T., Ionita P., Constantinescu T., Balaban A.T.: Rev. Roum. Chim.45, 1089 (2000)

    Google Scholar 

  30. Gizdavic-Nikolaidis M., Travas-Sejdic J., Bowmaker G.A., Cooney R.P., Kilmartin P.A.: Curr. Appl. Phys.4, 343–346 (2004)

    Article  Google Scholar 

  31. Cataldo F., Maltese P.: Polym. Adv. Technol.12, 293 (2001)

    Article  Google Scholar 

  32. Bodenhausen G., Stark R.E., Ruben D.J., Griffin R.G.: Chem. Phys. Lett.67, 424 (1979)

    Article  ADS  Google Scholar 

  33. Zumbulyadis N.: J. Chem. Phys.86, 1162 (1987)

    Article  ADS  Google Scholar 

  34. Zheng H.P., Zhang R.F., Dong F.X., Zheng Y.G., Shen J.C.: Macromol. Rapid Commun.18, 379 (1997)

    Article  Google Scholar 

  35. Long S.M., Brenneman K.R., Saprigin A., Kohlman R.S., Epstein A.J., Angelopoulos M., Buchwalter S.L., Rossi A., Zheng W., MacDiarmid A.G.: Synth. Met.84, 809–810 (1997)

    Article  Google Scholar 

  36. Brenneman K.R., Feng J., Zhou Y., MacDiarmid A.G., Kahol P.K., Epstein A.J.: Synth. Met.101, 785–786 (1999)

    Article  Google Scholar 

  37. Quillard S., Louarn G., Lefrant S., MacDiarmid A.G.: Phys. Rev. B50, 12496 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Zujovic.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03167027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zujovic, Z.D., Gizdavic-Nikolaidis, M., Kilmartin, P.A. et al. Solid-state magnetic resonance studies of polyaniline as a radical scavenger. Appl. Magn. Reson. 28, 123–136 (2005). https://doi.org/10.1007/BF03166999

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166999

Keywords

Navigation