Skip to main content
Log in

EPR study of the hemoglobin rotational correlation time and microviscosity during the polymerization of hemoglobin S

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The microviscosity and the protein rotational correlation time are analyzed in samples of hemoglobin A and hemoglobin S with the intracellular concentration at 36°C and during spontaneous deoxygenation. With this purpose, we use glutathione and carbonmonoxy hemoglobin labeled with 4-maleimido-2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) as probes and 4-maleimido TEMPO bound to the hemoglobin (A and S) as a spin label. The saturation transfer electron paramagnetic resonance experiment showed a sigmoidal behavior, and an increase (about twice) of the hemoglobin rotational correlation time and microviscosity during the polymerization process of hemoglobin S. The delay time determined by this method coincides with that obtained in proton magnetic resonance experiments. These results help to explain the temporal behavior of the proton relaxation times obtained in samples of hemoglobin A and S under the same experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton W.A., Hofricter J.: Adv. Prot. Chem.40, 63–279 (1990)

    Article  Google Scholar 

  2. Ferrone F.A., Manning J.M., Wei B., Josephs R., Bookchin R.M., Briehl R.W., Li X.: J. Biol. Chem.277, 13479–13487 (2002)

    Article  Google Scholar 

  3. Cabal C., Fernández A., Lores M., Alvarez E., Losada J., Soler C., Pérez E. in: Proceedings of the International Society for Magnetic Resonance in Medicine (Boesch Ch., Heshiki A., Grist T. M., eds.), p. 1705, Sixth Scientific Meeting and Exhibition, Sidney, Australia 1998. Berkeley: ISMRM 1998.

  4. Lores M., Cabal C.: Appl. Magn. Reson.28, 79–84 (2005)

    Article  Google Scholar 

  5. Van-Quynh A., Willson S., Bryant R.: Biophys. J.84, 558–563 (2003)

    Article  ADS  Google Scholar 

  6. Herrmann A., Müller P.: Biochim. Biophys. Acta885, 80–87 (1986)

    Article  Google Scholar 

  7. Gennaro A.M., Luquita A., Rasia M.: Biophys. J.71, 389–393 (1996)

    Article  Google Scholar 

  8. Thiyagarajan P., Johnson M.E.: Biophys. J.42, 269–274 (1983)

    Article  Google Scholar 

  9. Thomas D.D., Dalton L.R., Hyde J.S.: J. Chem. Phys.65, 3006–3024 (1976)

    Article  ADS  Google Scholar 

  10. Bryant R.G., Shirley W.M.: Biophys. J.32, 3–16 (1980)

    Article  ADS  Google Scholar 

  11. Daveloose D., Fabre G., Berleur F., Testylier G., Leterrier F.: Biochim. Biophys. Acta763, 41–49 (1983).

    Article  Google Scholar 

  12. Fernández A.: Ph.D. thesis, University of Oriente, Santiago de Cuba, Cuba, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lores, M., Cabal, C., Nascimento, O. et al. EPR study of the hemoglobin rotational correlation time and microviscosity during the polymerization of hemoglobin S. Appl. Magn. Reson. 30, 121–128 (2006). https://doi.org/10.1007/BF03166986

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166986

Keywords

Navigation