Skip to main content
Log in

Proton MRD Profile Analysis in Intracellular Hemoglobin Solutions: A Three Sites Exchange Model Approach

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The Three Sites Exchange Model (3SEM) was properly used to describe Proton (1H) Magnetic Relaxation Dispersion (1HMRD) in intracellular samples of hemoglobin A (HbA) and hemoglobin S (HbS) at 310 K. The HbA and HbS samples were obtained from whole blood of voluntary donors and patients, respectively, and processed by classical methods (centrifugation, decanting and freezing–thawing cycles). The 1HMRD profiles (20 kHz–60 MHz) were obtained using a Fast Field Cycling NMR Relaxometer (Stelar FFC 2000 Spinmaster) and Minispec relaxometers (Mq20, Mq60). The 3SEM used includes the contribution of labile protons from the structure of the protein; and the contribution of the cross relaxation to dispersion was estimated as: at least one order of magnitude lower than the total dispersion. Two dispersions were found: one of them properly describing the hemoglobin rotational correlation time and another one probably related to internal and/or hydrated water molecules with effective correlation times higher than 1 ns and main residence times less than the rotational correlation time of the protein. The use of the 3SEM creates the conditions to properly explain proton magnetic relaxation during the HbS polymerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Lores-Guevara, J.C. García-Naranjo, C.A. Cabal-Mirabal, Appl. Magn. Reson. 50, 541 (2019). https://doi.org/10.1007/s00723-018-1104-0

    Article  Google Scholar 

  2. C.A. Cabal-Mirabal, A. Fernández-García, M.A. Lores-Guevara, E. González-Dalmau, L. Oramas-Díaz, Appl. Magn. Reson. 49, 589 (2018). https://doi.org/10.1007/s00723-018-0985-2

    Article  Google Scholar 

  3. C.A. Cabal-Mirabal, M.A. Lores-Guevara, V.I. Chizhik, S.O. Rabdano, J.C. García-Naranjo, Appl Magn Reson. (2020). https://doi.org/10.1007/s00723-020-01241-x

    Article  Google Scholar 

  4. N. Archer, F. Galacteros, C. Brugnara, Am. J. Hematol. 90, 934 (2015). https://doi.org/10.1002/ajh.24116

    Article  Google Scholar 

  5. L. Gravitz, S. Pincock, Nature (2014). https://doi.org/10.1038/515S1a

    Article  Google Scholar 

  6. F.B. Piel, M.H. Steinberg, D.C. Rees, N. Engl, J. Med. 376, 1561 (2017). https://doi.org/10.1056/NEJMra1510865

    Article  Google Scholar 

  7. E.A. Ajjack, H.A. Awooda, S.E. Adalla, Int. J. Hematol. Disord. 1, 8 (2014). https://doi.org/10.12691/ijhd-1-1-2

    Article  Google Scholar 

  8. L.V. Parise, N. Berliner, Blood 127, 789 (2016). https://doi.org/10.1182/blood-2015-12-674606

    Article  Google Scholar 

  9. E.I. Obeagu, K.C. Ochei, B.N. Nwachukwu, B.O. Nchuma, Sch. J. App. Med. Sci. A3, 2244 (2015)

    Google Scholar 

  10. A. Nowogrodzki, Nature 596, S13 (2021). https://doi.org/10.1038/d41586-021-02143-z

    Article  ADS  Google Scholar 

  11. M.A. Lores-Guevara, C.A. Cabal-Mirabal, Appl. Magn. Reson. 28, 79 (2005). https://doi.org/10.1007/BF03166995

    Article  Google Scholar 

  12. Y. Cabrales, M.A. Lores-Guevara, Y. Machado, Appl. Magn. Reson. 33, 207 (2008). https://doi.org/10.1007/s00723-008-0074-z

    Article  Google Scholar 

  13. S. Kiihne, R.G. Bryant, Biophys. J. 78, 2163 (2000). https://doi.org/10.1016/S0006-3495(00)76763-4”

    Article  ADS  Google Scholar 

  14. I.R. Kleckner, M.P. Foster, Biochim. Biophys. Acta 1814, 942 (2011). https://doi.org/10.1016/j.bbapap.2010.10.012

    Article  Google Scholar 

  15. T.R. Lindstrom, S.H. Koenig, J. Magn. Reson. A15, 344 (1974)

    ADS  Google Scholar 

  16. B. Halle, Phil. Trans. R. Soc. Lond. B. 359, 1207 (2004). https://doi.org/10.1098/rstb.2004.1499

    Article  Google Scholar 

  17. M.A. Lores-Guevara, Y. Mengana-Torres, J.C. García-Naranjo, N. Rodríguez-Suárez, L.C. Suáres-Beyries, M.A. Marichal-Feliu, T. Simón-Boada, I.C. Rodríguez-Reyes, J. Phillipé, Appl. Magn. Reson. 49, 1075 (2018). https://doi.org/10.1007/s00723-018-1026-x

    Article  Google Scholar 

  18. M.A. Lores-Guevara, C.A. Cabal-Mirabal, O. Nascimento, A.M. Gennaro, Appl. Magn. Reson. 30, 121 (2006). https://doi.org/10.1007/BF03166986

    Article  Google Scholar 

  19. K. Hallenga, S.H. Koenig, Biochemistry A15, 4255 (1976)

    Article  Google Scholar 

  20. M.A. Lores-Guevara, Y.M. Mengana-Torres, J.C. García-Naranjo, A. Ramírez-Aguilera, L.C. Suáres-Beyries, M.A. Marichal-Feliu, T. Simón-Boada, J. Philippé, J. Biosci. Med. 4, 152 (2016). https://doi.org/10.4236/jbm.2016.412019

    Article  Google Scholar 

  21. M.A. Lores-Guevara, J.C. García-Naranjo, Y.M. Mengana-Torres, J. Pereira, Adv. Biol. Chem. 4, 388 (2014). https://doi.org/10.4236/abc.2014.46044

    Article  Google Scholar 

  22. K. Venu, V.P. Denisov, B. Halle, J. Am. Chem. Soc. 119, 3122 (1997). https://doi.org/10.1021/ja963611t

    Article  Google Scholar 

  23. V.P. Denisov, B. Halle, Faraday Discuss. 103, 227 (1996). https://doi.org/10.1039/FD9960300227

    Article  ADS  Google Scholar 

  24. V.P. Denisov, J. Peters, H.D. Hōrlein, B. Halle, Nature Struct. Biol. 3, 505 (1996). https://doi.org/10.1038/nsb0696-505

    Article  Google Scholar 

  25. K. Modig, E. Liepinsh, G. Otting, B. Halle, J. Am. Chem. Soc. 126, 102 (2004). https://doi.org/10.1021/ja038325d

    Article  Google Scholar 

  26. B. Halle, V.P. Denisov, Meth. Enzymol. 338, 178 (2001). https://doi.org/10.1016/s0076-6879(02)38220-x

    Article  Google Scholar 

  27. B. Halle, H. Johanneson, K. Venu, J. Magn. Reson. 135, 1 (1998). https://doi.org/10.1006/JMRE.1998.1534

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the FNRS (FONDS NATIONAL DE LA RECHERCHÉ SCIENTIFIQUE) from Belgium, and the researchers of the NMR LABORATORY OF THE UNIVERSITY OF MONS. The authors also want to thanks to the ULB BRUSSELS UNIVERSITY HOSPITAL for its support. At the same time we want to recognize the contribution of Lissett Lores Meléndez, Cuban Student of Medicine at the INSTITUTO SUPERIOR DE CIENCIAS MÉDICAS DE SANTIAGO DE CUBA, during data processing and the writing of the manuscript. On the other hand, we really appreciate the opinions and suggestions of Professor Pascal H. Fries during manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Tamayo Delgado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The two sites water exchange model (2SWEM) for 1H magnetic relaxation in protein solutions.

This approach [11,12,13,14,15] considers a fast exchange of water molecules between the solvent and the nws reduced amount of sites at the protein surface available for water binding. The water is considered irrotationally bound to these sites and the 1H-1H intramolecular dipolar interaction is defined as the main contribution to 1H water relaxation. Moreover, a mono-exponential autocorrelation function is used to describe the dipolar couplings and the interacting spins are considered as included in one spherical molecule rotating isotropically in a continuous media.Thus, the 1H water magnetic relaxation can be described as:

$$ \begin{gathered} R_{1} \left( {\omega_{0} } \right) = R_{1w}^{bulk} + \delta_{1} \tau_{C} \left[ {\frac{0.2}{{1 + \omega_{0}^{2} \tau_{C}^{2} }} + \frac{0.8}{{1 + 4\omega_{0}^{2} \tau_{C}^{2} }}} \right] \hfill \\ \delta_{1} = P_{b} \frac{3}{2}\left( {\frac{{\mu_{0} }}{4\pi }} \right)^{2} \frac{{\gamma^{4} \hbar^{2} }}{{r^{6} }} \hfill \\ R_{2} \left( {\omega_{0} } \right) = R_{2w}^{bulk} + \delta_{2} \tau_{C} \left[ {\frac{3}{5} + \frac{1}{{1 + \omega_{0}^{2} \tau_{C}^{2} }} + \frac{0.4}{{1 + 4\omega_{0}^{2} \tau_{C}^{2} }}} \right] \hfill \\ \delta_{2} = P_{b} \frac{3}{4}\left( {\frac{{\mu_{0} }}{4\pi }} \right)^{2} \frac{{\gamma^{4} \hbar^{2} }}{{r^{6} }} \hfill \\ \end{gathered} $$
(6)

In the Eq. (6), R2 = 1/T2 and \(R_{2w}^{bulk}\) is the transverse proton magnetic relaxation rate in the solvent.τC is the effective correlation time of the bound water, which includes the contributions of the bound water residence time res) and τR according to [16]:

$$ \frac{1}{{\tau_{C} }} = \frac{1}{{\tau_{res} }} + \frac{1}{{\tau_{R} }} $$
(7)

As the bound water has been considered irrotationally bound to the protein res >  > τR), then τC = τR. Pb is a function of nws, the molar concentration of Hb (NHb), the molarity of water (Nw) and the volume fraction occupied by the macromolecules (V) [11, 13, 17]:

$$ P_{b} = \frac{{n_{ws} N_{Hb} }}{{N_{w} \left( {1 - V} \right)}} $$
(8)

Assuming nws ≤ 10, as suggested by several authors [16], Pb is in the order of 10–4 for intracellular Hb (NHb = 5 mM/l) and the fraction of free water (solvent), which appears multiplying to \(R_{1w}^{bulk}\) and \(R_{2w}^{bulk}\) in the Eq. (6), can be considered equal to one.

Appendix 2

The three sites exchange model (3SEM) for 1H magnetic relaxation in protein solutions.

The longitudinal magnetic relaxation of the 1H in aqueous solutions of proteins is dominated by the R1 of the water protons (R1w) and the labile protons at the protein structure (R1p) [1, 11, 13, 15, 16, 22]. In aqueous solutions of proteins there are three types of water: internal (in), hydrated (hy) and free (bulk) water [16, 22]. The internal water is extensively bounded to the protein, through hydrogen bonds, in small cavities and deep crevices localized at the macromolecular structure [23, 24], having main residence times (\(\tau_{res}^{in}\)) from10−10 s to 10−3 s [22,23,24,25], and rotational correlation times (\(\tau_{c}^{in}\)) greater than 10−9 s [26]. The hydrated water is bounded to the external protein surface through hydrogen bonds, having main residence times (\(\tau_{res}^{hy}\)) and rotational correlation times (\(\tau_{c}^{hy}\)) in the range from 10−11 s to 10−10 s [23, 25]. The free water is characterized by rotational correlation times (\(\tau_{c}^{bulk}\)) in the order of 10−12 s [16]. The labile protons are short lived protons (low values of residence times:\(\tau_{res}^{p}\)) located in specific residues at the protein structure. The internal and hydrated water, as well as the labile protons, exchange fast with the solvent (\(\tau_{res}^{in} ,\tau_{res}^{hy} ,\tau_{res}^{p} < < R_{1}^{ - 1}\)). The 1HMRD profiles in aqueous solutions of proteins can be described using the following equation system [22]:

$$ \begin{gathered} R_{1} \left( {\omega_{0} } \right) = R_{1w}^{bulk} + \alpha + \beta \tau_{C}^{{}} \left[ {\frac{0.2}{{1 + \left( {\omega_{0} \tau_{C}^{{}} } \right)^{2} }} + \frac{0.8}{{1 + 4\left( {\omega_{0} \tau_{C}^{{}} } \right)^{2} }}} \right] \hfill \\ \alpha = \left( {\frac{{N_{hy} }}{{N_{T} }}} \right)\left( { < R_{1w}^{hy} >_{AV} - R_{1w}^{bulk} } \right) + 0.1\beta_{{{\text{int}} er}} \tau_{C}^{{}} \hfill \\ \beta = \beta_{{{\text{int}} ra}} + 0.9\beta_{{{\text{int}} er}} + \beta_{p} \hfill \\ \beta_{{{\text{int}} ra}} = \frac{1}{{N_{T} }}\frac{3}{2}\sum\limits_{\mu } {\left( {D_{\mu }^{{{\text{int}} ra}} A_{\mu }^{{{\text{int}} ra}} } \right)}^{2} \hfill \\ \beta_{{{\text{int}} er}} = \frac{1}{{N_{T} }}\sum\limits_{\mu } {\sum\limits_{i} {k_{i} } } \frac{1}{2}\left[ {\left( {D_{\mu 1i}^{{{\text{int}} er}} A_{\mu 1i}^{{{\text{int}} er}} } \right)^{2} + \left( {D_{\mu 2i}^{{{\text{int}} er}} A_{\mu 2i}^{{{\text{int}} er}} } \right)^{2} } \right] \hfill \\ D = \left( {\frac{{\mu_{0} }}{4\pi }} \right)^{{}} \frac{{\gamma^{2} \hbar }}{{\left( {r_{H - H}^{{}} } \right)^{3} }} \hfill \\ \beta_{p} = \frac{{\left[ {R_{1p} \left( 0 \right) - R_{1p} \left( {\omega_{\alpha } } \right)} \right]}}{{\tau_{C}^{{}} }} \hfill \\ R_{1p} \left( {\omega_{{}} } \right) = \frac{1}{{2\left( {N_{T} + N_{p} } \right)}}\sum\limits_{k} {\frac{{N_{pk} }}{{T_{1pk} \left( \omega \right) + \left( {\tau_{res}^{p} } \right)_{k} }}} \hfill \\ \hfill \\ \end{gathered} $$
(9)

where \(R_{1w}^{hy}\) is the longitudinal magnetic relaxation rate of the 1H at the hydrated water molecules and the symbol <  > AV is used to indicate average value. Nhy and Nin are the numbers of hydrated and internal water molecules per protein molecule. A is a generalized orientational order parameter and D is the dipole coupling constant [22]. \(A_{\mu }^{{{\text{int}} ra}}\) and \(D_{\mu }^{{{\text{int}} ra}}\) correspond to the intramolecular dipolar interaction between the protons belonging to the internal water molecules. \(A_{\mu 1i}^{{{\text{int}} er}}\),\(A_{\mu 2i}^{{{\text{int}} er}}\), \(D_{\mu 1i}^{{{\text{int}} er}}\) and \(D_{\mu 2i}^{{{\text{int}} er}}\) correspond to the intermolecular dipolar interactions between the protons belonging to the internal water molecules and the ith proton at the macromolecular structure. Here has been considered that the R1 of the protons at the internal water molecules and the R1 of the labile protons disperse with the same effective correlation time: τC.

In the Eq. (9), the μ sum is over the Nin internal water molecules, the i sum is over all protons partners in long-lived intermolecular dipole couplings, the k sum is over all labile protons groups and subscripts 1 and 2 refer to the two protons at the internal water molecule [22]. NT is the total number of bound water molecules per protein molecule (NT = Nin + Nhy), Np is the total number of labile protons per protein molecule and Npk is the number of labile protons in each group. For intermolecular dipole couplings within the cluster of the internal water molecules ki is a function of ω0 and τR, and for intermolecular dipole couplings with protein protons ki = 1 [22]. ωα is a resonance frequency at the high-frequency relaxation rate plateau. The Eq. (9) is strictly valid for an isolated pair of dipole-coupled equivalent I = 1/2 nuclei.

To take into account the contribution from cross-relaxation, a negative term is added to the first equation of the Eq. (9) to obtain:

$$ \begin{gathered} R_{1} \left( {\omega_{0} } \right) = R_{1w}^{bulk} + \alpha + \beta \tau_{C}^{{}} \left[ {\frac{0.2}{{1 + \left( {\omega_{0} \tau_{C}^{{}} } \right)^{2} }} + \frac{0.8}{{1 + 4\left( {\omega_{0} \tau_{C}^{{}} } \right)^{2} }}} \right] - \beta_{cross} \tau_{C}^{{}} F_{cross} \left( {\omega_{0} \tau_{C} } \right) \hfill \\ F_{cross} \left( {\omega_{0} \tau_{C} } \right) = \frac{{\left[ {\frac{1.2}{{1 + 4\left( {\omega_{0} \tau_{C} } \right)^{2} }} - 0.2} \right]^{2} }}{{\left[ {0.1 + \frac{0.3}{{1 + \left( {\omega_{0} \tau_{C}^{{}} } \right)^{2} }} + \frac{0.6}{{1 + 4\left( {\omega_{0} \tau_{C}^{{}} } \right)^{2} }}} \right]}} \hfill \\ \end{gathered} $$
(10)

Here Fcross0τC) is obtained for the particular case in which the protons of the bound water interact with only one proton belonging to the protein structure [22]. More general and inclusive cases give place to much more complex terms describing cross-relaxation contribution with non-analytical solutions [22].

If \(\tau_{res}^{in} ,\tau_{res}^{p}\) >  > τR, then τC = τR in the equations for R1, βp and Fcross at the Eqs. (9) and (10) considering that:

$$ \frac{1}{{\tau_{c}^{i} }} = \frac{1}{{\tau_{res}^{i} }} + \frac{1}{{\tau_{R}^{{}} }} $$
(11)

where the superscript i can be referred to the internal water molecules, or to labile protons at the protein structure. In the specific case of α (Eq. (9)), the second term corresponds to intermolecular dipole couplings of the internal water molecules, in which τC=\(\tau_{c}^{in}\) is lower than 1 ns, thus contributing to the non-dispersive relaxation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guevara, M.A.L., Mirabal, C.A.C., Muller, R.N. et al. Proton MRD Profile Analysis in Intracellular Hemoglobin Solutions: A Three Sites Exchange Model Approach. Appl Magn Reson 53, 387–399 (2022). https://doi.org/10.1007/s00723-021-01452-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01452-w

Keywords

Navigation