Skip to main content
Log in

Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr H.Y., Purcell E.M.: Phys. Rev.94, 630–638 (1954)

    Article  ADS  Google Scholar 

  2. Moseley M.E., Kucharczyk J., Mintorovitch J., Cohen Y., Kurhanewicz J., Derugin N., Asgari H., Norman D.: Am. J. Neuroradiol.11, 423–429 (1990)

    Google Scholar 

  3. Basser P.J., Mattiello J., Le Bihan D.: J. Magn. Reson. B103, 247–254 (1994)

    Article  Google Scholar 

  4. Filippi M., Cercignani M., Inglese M., Horsfield M.A., Comi G.: Neurology56, 304–311 (2001)

    Google Scholar 

  5. Buchsbaum M.S., Tang C.Y., Peled S., Gudbjartsson H., Lu D., Hazlett E.A., Downhill J., Haznedar M., Fallon J.H., Atlas S.W.: Neuroreport9, 425–430 (1998)

    Article  Google Scholar 

  6. Pfefferbaum A., Sullivan E.V., Hedehus M., Lim K.O., Adalsteinsson E., Moseley M.: Magn. Reson. Med.44, 259–268 (2000)

    Article  Google Scholar 

  7. Mukherjee P., Miller J.H., Shimony J.S., Philip J.V., Nehra D., Snyder A.Z., Conturo T.E., Neil J.J., McKinstry R.C.: Am. J. Neuroradiol.23, 1445–1456 (2002)

    Google Scholar 

  8. Schneider J.F., Il’yasov K.A., Hennig J., Martin E.: Neuroradiology46, 258–266 (2004)

    Article  Google Scholar 

  9. Mori S., Crain B.J., Chacko V.P., van Zijl P.C.: Ann. Neurol.45, 265–269 (1999)

    Article  Google Scholar 

  10. Basser P.J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A.: Magn. Reson. Med.44, 625–632 (2000)

    Article  Google Scholar 

  11. Neeman M., Freyer J.P., Sillerud L.O.: J. Magn. Reson.90, 303–312 (1990)

    Google Scholar 

  12. Mattiello J., Basser P.J., Le Bihan D.: Magn. Reson. Med.37, 292–300 (1997)

    Article  Google Scholar 

  13. Mattiello J., Basser P.J., Le Bihan D.: J. Magn. Reson. A108, 131–141 (1994)

    Article  Google Scholar 

  14. Stejskal E.O., Tanner J.E.: J. Chem. Phys.42, 228–292 (1965)

    Article  Google Scholar 

  15. Reese T.G., Heid O., Weisskoff R.M., Wedeen V.J.: Magn. Reson. Med.49, 177–182 (2003)

    Article  Google Scholar 

  16. Jones D.K., Horsfield M.A., Simmons A.: Magn. Reson. Med.42, 515–525 (1999)

    Article  Google Scholar 

  17. Le Bihan D., Mangin J.F., Poupon C., Clark C.A., Pappata S., Molko N., Chabriat H.: J. Magn. Reson. Imaging13, 534–546 (2001)

    Article  Google Scholar 

  18. Il’yasov K.A., Hennig J: J. Magn. Reson. Imaging8, 1296–1305 (1998)

    Article  Google Scholar 

  19. Conturo T.E., McKinstry R.C., Aronovitz J.A., Neil J.J.: NMR Biomed.8, 307–332 (1995)

    Article  Google Scholar 

  20. Schneider J.F., Il’yasov K.A., Boltshauser E., Hennig J., Martin E.: Am. J. Neuroradiol.24, 819–824 (2003)

    Google Scholar 

  21. Frank L.R.: Magn. Reson. Med.47, 1083–1099 (2002)

    Article  ADS  Google Scholar 

  22. Alexander D.C., Barker G.J., Arridge S.R.: Magn. Reson. Med.48, 331–340 (2002)

    Article  Google Scholar 

  23. Kreher B.W., Schneider J., Martin E., Hennig J., Il’yasov K. in: Proceedings of the 11th International Society for Magnetic Resonance in Medicine, July 10–16, 2003, Ontario, Canada (Lomas D.J., ed.), p. 241. Toronto: JSMRM 2004.

    Google Scholar 

  24. Neeman M., Freyer J.P., Sillerud L.O.: Magn. Reson. Med.21, 138–143 (1991)

    Article  Google Scholar 

  25. Jara H., Wehrli F.W.: J. Magn. Reson. Imaging4, 787–797 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’yasov, K.A., Barta, G., Kreher, B.W. et al. Importance of exactb-tensor calculation for quantitative diffusion tensor imaging and tracking of neuronal fiber bundles. Appl. Magn. Reson. 29, 107–122 (2005). https://doi.org/10.1007/BF03166958

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166958

Keywords

Navigation