Skip to main content
Log in

Structure and dynamics of radicals in zeolite matrices: ESR and theoretical studies

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Amine radical cations of the type R3N·+ and [R3NCH2]·+, R=CH3, C3H7, and nitric oxide, NO, have been used to probe the bonding to the surface and the dynamics of the radicals trapped in the confined space of cages or channels in the zeolite. Regular continuous-wave electron spin resonance (ESR) was employed to study the internal motion of the cation radicals formed by γ-irradiation of amines and related ammonium ions, introduced during the synthesis of the zeolites Al-offretite, SAPO-37, SAPO-42 and AlPO4-5. The ESR spectra of [(CH3)3NCH2]·+ radical cation in several studied systems changed reversibly with temperature, indicating dynamical effects. Free rotation about the >N−CH2 bond of the [(CH3)3NCH2]·+ species was found to occur in the temperature range of 110 to 300 K, while the rotation about the >N−CH3 bonds was hindered. The observations confirm the theoretical prediction on the basis of density functional theory calculations, which indicate that the corresponding barriers are of the order of 0.3 and 7 kJ/mol, respectively. The radical cations of the type R3N·+ with R=C2H5, C3H7 were found to undergo a different type of dynamics, involving a two-jump process of the methylene hydrogens next to the nitrogen. A cage or channel size effect on the stability and molecular dynamics was inferred in some cases. Pulsed ESR was employed to study the (NO)2 triplet-state dimers in Na-A type zeolite, with the purpose to resolve the interaction with surface groups, and to elucidate the role of the zeolite on stabilizing the triplet rather than the usual singlet state. Measurements performed at 5 K gave rise to Fourier transform spectra that were assigned to the dimer species interacting with one or more23Na nuclei, with approximative parameters A(23Na)=(4.6, 4.6, 8.2) MHz and Q(23Na)=(−0.3, −0.3, 0.6) MHz for the hyperfine and nuclear quadrupole coupling tensors, respectively. The values are of similar magnitude as those determined for the NO−Na+ complex. The stability of the triplet-state structure was attributed to unusual geometric structure imposed by the zeolite matrix, with the N−O bonds along a line as in [O−N−Na+−N−O], which according to UHF ab initio calculations has a triplet ground

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eastland G.W., Rao D.N.R., Symons M.C.R.: J. Chem. Soc. Perkin Trans.1984, 5151.

  2. Shiotani M.: Magn. Reson. Rev.12, 333 (1987)

    Google Scholar 

  3. Lund A., Lindgren M., Lunell S., Maruani J. in: Molecules in Physics, Chemistry and Biology (Maruani J., ed.), vol. III, p. 259. Berlin: Springer 1989.

    Google Scholar 

  4. Lund A., Shiotani M.: Radical Ionic Systems, pp. 125–175. Dordrecht: Kluwer 2001.

    Google Scholar 

  5. Sjöqvist L., Lund A., Maruani J.: Chem. Phys.125, 293 (1988)

    Article  Google Scholar 

  6. Sjöqvist L., Lindgren M., Lund A.: Chem. Phys. Lett.156, 323 (1989)

    Article  ADS  Google Scholar 

  7. Sjöqvist L., Lindgren M., Lund A.: J. Chem. Soc. Faraday Trans.86, 3377 (1990)

    Article  Google Scholar 

  8. Shiotani M., Sjöqvist L., Lund A., Lunell S., Eriksson L., Huang M.B.: J. Phys. Chem.94, 8081 (1990)

    Article  Google Scholar 

  9. Shiotani M., Lindgren M., Ichikawa T.: J. Am. Chem. Soc.112, 967 (1990)

    Article  Google Scholar 

  10. Komaguchi K., Shiotani M.: J. Phys. Chem. A101, 6983 (1997)

    Article  Google Scholar 

  11. Liu W., Wang P., Komaguchi K., Shiotani M., Michalik J., Lund A.: Phys. Chem. Chem. Phys.2, 2515 (2000)

    Article  Google Scholar 

  12. Liu W., Shiotani M., Michalik J., Lund A.: Phys. Chem. Chem. Phys.3, 3532 (2001)

    Article  Google Scholar 

  13. Liu W., Yamanaka S., Shiotani M., Michalik J., Lund A.: Phys. Chem. Chem. Phys.3, 1611 (2001)

    Article  Google Scholar 

  14. Liu W.: Ph. D. thesis, Hiroshima University, Hiroshima, Japan, 2001.

  15. Shiotani M., Freed J.H.: J. Phys. Chem.85, 3873 (1981)

    Article  Google Scholar 

  16. Nagata M., Yahiro H., Shiotani M., Lindgren M., Lund A.: Chem. Phys. Lett.256, 27 (1996)

    Article  ADS  Google Scholar 

  17. Yahiro H., Shiotani M., Freed J.H., Lindgren M., Lund A.: Stud. Surf. Sci. Catal.94, 673 (1995)

    Article  Google Scholar 

  18. Li H., Lund A., Lindgren M., Sagstuen E., Yahiro H.: Chem. Phys. Lett.271, 84 (1997)

    Article  ADS  Google Scholar 

  19. Yahiro H., Nagata M., Shiotani M., Lindgren M., Li H., Lund A.: Nukleonika42, 557 (1997)

    Google Scholar 

  20. Li H., Yahiro H., Shiotani M., Lund A.: J. Phys. Chem. B102, 5641 (1998)

    Article  Google Scholar 

  21. Li H., Yahiro H., Komaguchi K., Shiotani M., Sagstuen E., Lund A.: Microporous Mesoporous Mater.30, 275 (1999)

    Article  Google Scholar 

  22. Lunsford J.H.: J. Phys. Chem.72, 4163 (1968)

    Article  Google Scholar 

  23. Gardner C.L., Weinberger M.A.: Can. J. Chem.48, 1317 (1970)

    Article  Google Scholar 

  24. Kasai P.H., Bishop R.J.: J. Am. Chem. Soc.94, 5560 (1972)

    Article  Google Scholar 

  25. Gutsze A., Plato M., Karge H., Witzel F.: J. Chem. Soc. Faraday Trans.92, 2495 (1996)

    Article  Google Scholar 

  26. Pöppl A., Rudolf T., Manikandan P., Goldfarb D.: J. Am. Chem. Soc.122, 10194 (2000)

    Article  Google Scholar 

  27. Kasai P.H., Gaura R.M.: J. Phys. Chem.86, 4257 (1982)

    Article  Google Scholar 

  28. Biglino D., Li H., Erickson R., Lund A., Yahiro H., Shiotani M.: Phys. Chem. Chem. Phys.1, 2887 (1999)

    Article  Google Scholar 

  29. Yahiro H., Lund A., Aasa R., Benetis N.P., Shiotani M.: J. Phys. Chem. A104, 7950 (2000)

    Article  Google Scholar 

  30. Yahiro H., Lund A., Benetis N.P., Shiotani M.: Chem. Lett. 736 (2000)

  31. Biglino D., Bonora M., Volodin A., Lund A.: Chem. Phys. Lett.349, 511 (2001)

    Article  ADS  Google Scholar 

  32. Volodin A., Biglino D., Itagaki Y., Shiotani M., Lund A.: Chem. Phys. Lett.327, 165 (2000)

    Article  ADS  Google Scholar 

  33. Biglino D.: Ph. D. thesis, Linköping University, Linköping, Sweden, 2001.

  34. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Zakrzewski V.G., Montgomery J.A. Jr., Stratmann R.E., Burant J.C., Dapprich S., Millam J.M., Daniels A.D., Kudin K.N., Strain M.C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G.A., Ayala P.Y., Cui Q., Morokuma K., Malick K., Rabuck A.D., Raghavachari K., Foresman J.B., Cioslowski J., Ortiz J.V., Baboul A.G., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Andres J.L., Gonzalez C., Head-Gordon M., Replogle E.S., Pople J.A.: Gaussian 98, Revision A.9; Gaussian Inc.: Pittsburgh, PA., 1998.

    Google Scholar 

  35. Dikanov S.A., Tsvetkov Y.D.: Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Boca Raton, Fla.: CRC Press 1992.

    Google Scholar 

  36. Schweiger A., Jeschke G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford: Oxford University Press 2001.

    Google Scholar 

  37. Erickson R.: Chem. Phys.202, 263 (1996)

    Article  ADS  Google Scholar 

  38. Shiga T., Lund A.: J. Phys. Chem.77, 453 (1973)

    Article  Google Scholar 

  39. Bednarek J., Lund A., Schlick S.: J. Phys. Chem.100, 3910 (1996)

    Article  Google Scholar 

  40. Sagstuen E., Lund A., Itagaki Y., Maruani J.: J. Phys. Chem. A104, 6362 (2000)

    Article  Google Scholar 

  41. Pauling L.: The Nature of the Chemical Bond, pp. 344–345. New York: Cornell University Press 1960.

    Google Scholar 

  42. Claesson O., Lund A.: J. Magn. Reson.41, 106 (1980)

    Google Scholar 

  43. Lee H.-O., Doan P.E., Hoffman B.M.: J. Magn. Reson.140, 91 (1999)

    Article  ADS  Google Scholar 

  44. Bowman M.K., Massath R.J.: Electron Magnetic Resonance of the Solid State (Weil J.A., ed.). Ottawa: The Canadian Society for Chemistry 1987.

    Google Scholar 

  45. Thuomas K.-Å., Lund A.: J. Magn. Reson.22, 315 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Lund, A., Shiotani, M. et al. Structure and dynamics of radicals in zeolite matrices: ESR and theoretical studies. Appl. Magn. Reson. 24, 285–302 (2003). https://doi.org/10.1007/BF03166930

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166930

Keywords

Navigation