Skip to main content
Log in

ENDOR and related EMR methods applied to flavoprotein radicals

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Flavoproteins are involved in a wide range of biological processes, owing to the versatility of the isoalloxazine moiety of flavin, which can undergo both one- and two-electron reactions with the formation of three oxidation states. Paramagnetic semiquinone radical states are stabilised in some flavoproteins and appear as transient intermediates in the reaction of many others. The apoprotein controls the reactivity of flavin semiquinones, including redox potentials, protonation states and access to substrates. Most flavoproteins are involved in oxidation-reduction processes, but some catalyze different types of reactions involving radical intermediates. Anionic and neutral flavin radicals are found in flavoproteins and are distinguished by their line widths in X-band electron paramagnetic resonance. Electron-nuclear double resonance, electron spin echo envelope modulation and hyperfine sublevel correlation spectroscopy make it possible to observe biological electron transfer and catalysis at the level of the electronic structure of the intermediate states. They provide information about the protein environment of flavin semiquinone radicals and their interactions with nearby nuclear and electron spins. Hyperfine couplings, particularly to the 8-methyl protons on the flavin ring, are a sensitive probe of perturbations of the flavin environment. They demonstrate differences in polarity of the flavin binding site and changes that occur in flavoenzymes during binding of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michaelis L., Schubert M.P., Smythe C.V.: J. Biol. Chem.116, 587–607 (1936)

    Google Scholar 

  2. Massey V.: Biochem. Soc. Trans.28, 283–296 (2000)

    Article  Google Scholar 

  3. Bornemann S.: Nat. Prod. Rep.19, 761–772 (2002)

    Article  Google Scholar 

  4. Kay W.M., Weber S. in: Electron Paramagnetic Resonance, vol. 18, pp. 222–253. Specialist Periodical Reports. London: Royal Society of Chemistry 2002.

    Book  Google Scholar 

  5. Beinert H.: J. Am. Chem. Soc.78, 5323–5328 (1956)

    Article  Google Scholar 

  6. Ehrenberg A., Eriksson L.E., Hyde J.S.: Biochim. Biophys. Acta167, 482–484 (1968)

    Google Scholar 

  7. Müller F., Hemmerich P., Ehrenberg A., Palmer G., Massey V.: Eur. J. Biochem.14, 185–196 (1970)

    Article  Google Scholar 

  8. Aleman V., Handler P., Palmer G., Beinert H.: J. Biol. Chem.243, 2560–2568 (1968)

    Google Scholar 

  9. Edmondson D.E.: Biochem. Soc. Trans.13, 593–600 (1985)

    Google Scholar 

  10. Massey V., Palmer G.: Biochemistry5, 3181–3189 (1966)

    Article  Google Scholar 

  11. Lowe H.J., Clark W.M.: J. Biol. Chem.221, 983–992 (1956)

    Google Scholar 

  12. Draper R.D., Ingraham L.L.: Arch. Biochem. Biophys.125, 802–808 (1968)

    Article  Google Scholar 

  13. Mayhew S.G.: Eur. J. Biochem.265, 698–702 (1999)

    Article  Google Scholar 

  14. Müller F. (ed.): Chemistry and Biochemistry of Flavoenzymes. Boca Raton, Fla.: CRC Press 1990.

    Google Scholar 

  15. Mayhew S.G., Foust G.P., Massey V.: J. Biol. Chem.244, 803–810 (1969)

    Google Scholar 

  16. Müller F. in: Radicals in Biochemistry. Topics in Current Chemistry, vol. 108, pp. 71–107. New York: Springer 1983.

    Google Scholar 

  17. Kurreck H., Bretz N.H., Helle N., Henzel N., Weilbacher E.: J. Chem. Soc. Faraday Trans. I84, 3293–3306 (1988)

    Article  Google Scholar 

  18. Kurreck H., Kirste B., Lubitz W.: Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution. Weinheim: VCH Publishers 1988.

    Google Scholar 

  19. Walker W.H., Salach J., Gutman M., Singer T.P., Hyde J.S., Ehrenberg A.: FEBS Lett.5, 237–240 (1969)

    Article  Google Scholar 

  20. Ghisla S., Massey V.: Biochem. J.239, 1–12 (1986)

    Google Scholar 

  21. Weilbacher E., Helle N., Elsner M., Kurreck H., Müller F., Allendoerfer R.D.: Magn. Reson. Chem.26, 64–72 (1988)

    Article  Google Scholar 

  22. Nogués I., Tejero J., Hurley J.K., Paladini D., Frago S., Tollin G., Mayhew S.G., Gómez-Moreno C., Ceccarelli E.A., Carrillo N., Medina M.: Biochemistry43, 6127–6137 (2004)

    Article  Google Scholar 

  23. Medina M., Vrielink A., Cammack R.: FEBS Lett.400, 247–251 (1997)

    Article  Google Scholar 

  24. Eriksson L.E., Walker W.H.: Acta Chem. Scand.24, 3779 (1970)

    Article  Google Scholar 

  25. Eriksson L.E., Ehrenberg A.: Biochim. Biophys. Acta295, 57–66 (1973)

    Google Scholar 

  26. Ballou D.P., Palmer G.: Anal. Chem.46, 1248 (1974)

    Article  Google Scholar 

  27. Bray R.C., Palmer G., Beinert H.: J. Biol. Chem.239, 2667–2676 (1964)

    Google Scholar 

  28. Medina M., Gómez-Mereno C.: Photosynth. Res.79, 113–131 (2004)

    Article  Google Scholar 

  29. Falkowski P.G., Barber R.T., Smetacek V.: Science281, 200–206 (1998)

    Article  Google Scholar 

  30. Nogués I., Campos L.A., Sancho J., Gómez-Moreno C., Mayhew S.G., Medina M.: Biochemistry43, 15111–15121 (2004)

    Article  Google Scholar 

  31. Medina M., Gómez-Moreno C., Cammack R.: Eur. J. Biochem.227, 529–536 (1995)

    Article  Google Scholar 

  32. Medina M., Cammack R.: J. Chem. Soc. Perkin Trans., 2,1996 633–638

    Google Scholar 

  33. Medina M., Lostao A., Sancho J., Gómez-Moreno C., Cammack R., Alonso P.J., Martínez J.I.: Biophys. J.77, 1712–1720 (1999)

    Article  Google Scholar 

  34. Martínez J.I., Alonso P.J., Gómez-Moreno C., Medina M.: Biochemistry36, 15526–15537 (1997)

    Article  Google Scholar 

  35. Medina M., Gómez-Moreno C., Cammack R., Arakaki A., Carrillo N., Ceccarelli E. in: Flavins and Flavoproteins 1999: Proceedings of the Thirteenth International Symposium Konstanz, August 29 through September 4, 1999 (Ghisla S. et al., eds.), pp. 87–90. Berlin: Rudolf Weber 1999.

    Google Scholar 

  36. Orellano E.G., Calcaterra N.B., Carrillo N., Ceccarelli E.A.: J. Biol. Chem.268, 19267–19273 (1993)

    Google Scholar 

  37. Medina M., Vrielink A., Cammack R.: Eur. J. Biochem.222, 941–947 (1994)

    Article  Google Scholar 

  38. Weber S., Möbius K., Richter G., Kay C.W.M.: J. Am. Chem. Soc.123, 3790–3798 (2001)

    Article  Google Scholar 

  39. García J.I., Medina M., Sancho J., Alonso P.J., Gómez-Moreno C., Mayoral J.A., Martínez J.I.: J. Phys. Chem. A106, 4729–4735 (2002)

    Article  Google Scholar 

  40. Li J.Y., Vrielink A., Brick P., Blow D.M.: Biochemistry32, 11507–11515 (1993)

    Article  Google Scholar 

  41. Cinkaya I., Buckel W., Medina M., Gómez-Moreno C., Cammack R.: Biol. Chem.378, 843–849 (1997)

    Article  Google Scholar 

  42. Martins B.M., Dobbek H., Cinkaya I., Buckel W., Messerschmidt A.: Proc. Natl. Acad. Sci. USA101, 15645–15649 (2004)

    Article  ADS  Google Scholar 

  43. Kay C.W.M., Feicht R., Schulz K., Sadewater P., Sancar A., Bacher A., Möbius K., Richter G., Weber S.: Biochemistry38, 16740–16748 (1999)

    Article  Google Scholar 

  44. Weber S., Kay C.W.M., Mogling H., Möbius K., Hitomi K., Todo T.: Proc. Natl. Acad Sci. USA99, 1319–1322 (2002)

    Article  ADS  Google Scholar 

  45. Kay C.W.M., Schleicher E., Hitomi K., Todo T., Bittl R., Weber S.: Magn. Reson. Chem.43, S96-S102 (2005)

    Article  Google Scholar 

  46. Schnegg A., Kay C.W.M., Schleicher E., Hitomi K., Todo T., Möbius K., Weber S.: Mol. Phys.104, 1627–1633 (2006)

    Article  ADS  Google Scholar 

  47. Weber S., Kay C.W.M., Bacher A., Richter G., Bittl R.: Chem. Phys. Chem.6, 292–299 (2005)

    Google Scholar 

  48. Macheroux P., Bornemann S., Ghisla S., Thorneley R.N.F.: J. Biol. Chem.271, 25850–25858 (1996)

    Article  Google Scholar 

  49. Macheroux P., Petersen J., Bornemann S., Lowe D.J., Thorneley R.N.F.: Biochemistry35, 1643–1652 (1996)

    Article  Google Scholar 

  50. Mohsen A.W.A., Rigby S.E.J., Jensen K.F., Munro A.W., Scrutton N.S.: Biochemistry43, 6498–6510 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, M., Cammack, R. ENDOR and related EMR methods applied to flavoprotein radicals. Appl. Magn. Reson. 31, 457–470 (2007). https://doi.org/10.1007/BF03166596

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166596

Keywords

Navigation