Skip to main content
Log in

N@C60 and P@C60 as quantum bits

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Due to their long electron spin relaxation times, the endohedral fullerenes N@C60 and P@C60 are good candidates for the implementation of qubits in an electron spin quantum computer. A central operation in this context is the rotation of the spin direction by an arbitrary angle. In the present experiment, this nutation behavior was studied in pulsed electron spin resonance measurements. We show that, even at room temperature, about 50 Rabi oscillations (about 100 qubit operations) can be performed without refocusing the spin system, although inhomogeneities are present. A special feature of the group V endohedral fullerenes is the electron spinS=3/2, which complicates the nutation behavior. The zero-field splitting at low temperature gives rise to different nutation frequencies for the (1/2,−1/2) transition and the (±3/2, ±1/2) transitions. The frequency ratio is 2/31/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R.P.: Int. J. Theor. Phys.21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor P.W.: SIAM J. Comput.26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Vandersypen L.M.K., Steffen M., Breyta G., Yannoni C.S., Sherwood M.H., Chuang I.L.: Nature414, 883–887 (2001)

    Article  ADS  Google Scholar 

  4. Warren W.S.: Science277, 1688–1689 (1997)

    Article  Google Scholar 

  5. Jones J.A.: Prog. Nucl. Magn. Reson. Spectrosc.38, 325–360 (2001)

    Article  Google Scholar 

  6. Kane B.E.: Nature393, 133–137 (1998)

    Article  ADS  Google Scholar 

  7. Harneit W.: Phys. Rev. A65, 032322 (2002)

    Article  ADS  Google Scholar 

  8. Suter D., Lim K.: Phys. Rev. A65, 052309 (2002)

    Article  ADS  Google Scholar 

  9. Harneit W., Meyer C., Weidinger A., Suter D., Twamley J.: Phys. Status Solidi B233, 453–461 (2002)

    Article  Google Scholar 

  10. Weidinger A., Wablinger M., Pietzak B., Almeida Murphy T.: Appl. Phys. A66, 287–292 (1998)

    Article  ADS  Google Scholar 

  11. Astashkin A.V., Schweiger A.: Chem. Phys. Lett.174, 595–602 (1990)

    Article  ADS  Google Scholar 

  12. Almeida Murphy T.A., Pawlik T., Weidinger A., Höhne M., Alcala R., Spaeth J.-M.: Phys. Rev. Lett.77, 1075–1078 (1996)

    Article  ADS  Google Scholar 

  13. Isoya J., Kande H., Norris J.R., Tang J., Bowman N.K.: Phys. Rev. B41, 3905–3913 (1990)

    Article  ADS  Google Scholar 

  14. Solomon I.: Phys. Rev. Lett.2, 301–302 (1959)

    Article  ADS  Google Scholar 

  15. Stoll S., Jeschke G., Willer M., Schweiger A.: J. Magn. Reson.130, 86–96 (1998)

    Article  ADS  Google Scholar 

  16. Dinse K.-P., Käß H., Knapp C., Weiden N.: Carbon38, 1635–1640 (2000)

    Article  Google Scholar 

  17. Meyer C., Harneit W., Lips K., Weidinger A., Jakeš P., Dinse K.-P.: Phys. Rev. A65, 061201(R) (2002)

    Article  ADS  Google Scholar 

  18. Jakeš P., Weiden N., Eichel R.-A., Gembus A., Dinse K.-P., Meyer C., Harneit W., Weidinger A.: J. Magn. Reson.156, 303–308 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Harneit, W., Naydenov, B. et al. N@C60 and P@C60 as quantum bits. Appl. Magn. Reson. 27, 123–132 (2004). https://doi.org/10.1007/BF03166307

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166307

Keywords

Navigation