Skip to main content
Log in

Quadrupole effects in63Cu NMR spectroscopy of copper nanocrystals

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Quadrupole effects in room-temperature continuous-wave (CW)63Cu nuclear magnetic resonance (NMR) spectra, “π/2” pulse length shortening and amplitudes of two-pulse generated echoes were investigated on nanocrystalline copper powders produced by cryogenic melting and by ball milling techniques. Systematic measurements on the parent polycrystalline copper and on copper-based copper-palladium dilute alloys on the basis of the same experimental techniques were also made and the results were compared to that of the nanophase samples. Fractions of Cu nuclei contributing to the specific NMR responses and average field gradients coming from noncubic neighborhoods were estimated in all the investigated cases. The satellite and/or central component origins of NMR spectra of the samples are not a priori trivial even in the simplest case. Comparative analysis of CW and pulsed experiments allowed a surprising technological conclusion to be drawn by finding a smaller chemical impurity content inside the nanograins than the value characteristic of the entire sample. The measured decrease of the impurity concentration in the inner region of the copper nanoparticles is the consequence of the applied technologies: cryogenic melting and ball milling. These preparation methods cause grain-boundary segregation and result in a cleaner inside of copper nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen M.H., Reif F.: Solid State Physics, vol. 5, p. 321. New York: Academic Press 1957.

    Google Scholar 

  2. Solomon I.: Phys. Rev.110, 61–65 (1958)

    Article  ADS  Google Scholar 

  3. Butterworth J.: Proc. Phys. Soc. Lond.86, 297–304 (1965)

    Article  Google Scholar 

  4. Mansfield P.: Phys. Rev.137, A961-A974 (1965)

    Article  ADS  Google Scholar 

  5. Bonera G., Galimberti M.: Solid State Commun.4, 589–591 (1966)

    Article  ADS  Google Scholar 

  6. Warren W.W., Norberg R.E.: Phys. Rev.154, 277–286 (1967)

    Article  ADS  Google Scholar 

  7. Kanert G., Mehring M. in: NMR Basic Principles and Progress (Diehl P., Fluck E., Kosfeld R., eds.), vol. 3, p. 1. Berlin: Springer 1971.

    Google Scholar 

  8. Pandey L., Towta S., Hughes D.G.: J. Chem. Phys.85, 6923–6927 (1986)

    Article  ADS  Google Scholar 

  9. Birringer R., Gleiter H. in: Encyclopedia of Materials Science and Engineering (Cahn R.W., ed.) Suppl. vol. 1, p. 339. Oxford: Pergamon 1988.

    Google Scholar 

  10. Sanctuary B.C., Halstead T.K., Osment P.A.: Mol. Phys.49, 753–784 (1983)

    Article  ADS  Google Scholar 

  11. Faulkner E.A.: Philos. Mag.5, 843–851 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  12. Tompa K., Tóth F.: KFKI Rep.11, 215–225 (1963)

    Google Scholar 

  13. Rowland T.J.: Phys. Rev.119, 900–912 (1960)

    Article  ADS  Google Scholar 

  14. Tompa K.: J. Phys. Chem. Solids33, 163–175 (1972)

    Article  ADS  Google Scholar 

  15. Serfőző G., Tompa K., Lovas A.: J. Phys. Chem. Solids35, 1303–1309 (1974)

    Article  ADS  Google Scholar 

  16. Tompa K.: Pure Appl. Chem.40, 61–72 (1974)

    Article  Google Scholar 

  17. Dickenscheid W., Birringer R., Gleiter H., Kanert O., Michel B., Günter B.: Solid State Commun.79, 683–686 (1991)

    Article  ADS  Google Scholar 

  18. Suits B.H., Meng M., Siegel R.W., Liao Y.X. in: Nanophase and Nanocomposite Materials (Komarneni S., Parker J.C., Thomas G.J., eds.), pp. 137–142. Pittsburgh, Pa.: Materials Research Society 1993 (Materials Research Society Symposium Proceedings, vol 286)

    Google Scholar 

  19. Suits B.H., Meng M., Siegel R.W., Liao Y.X.: J. Mater. Res.9, 336–342 (1994)

    Article  ADS  Google Scholar 

  20. Champion Y., Bigot J.: Scr. Mater.35, 517–522 (1996)

    Article  Google Scholar 

  21. Champion Y., Bigot J.: Mater. Sci. Eng. A217–218, 58–63 (1996)

    Google Scholar 

  22. Fecht H.J. in: Nanomaterials: Synthesis, Properties and Applications (Edelstein A.S., Cammarata R.C., eds.), p. 89. Bristol: Institute of Physics Publishing 1996.

    Google Scholar 

  23. Klug H.P., Alexander L.E.: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., p. 679. New York: Wiley 1974.

    Google Scholar 

  24. Tompa K., Tóth F.: Mag. Fiz. Foly.11, 177–189 (1963)

    Google Scholar 

  25. Harper C., Barnes R.G.: J. Magn. Reson.21, 507–508 (1976)

    Google Scholar 

  26. Tompa K., Zámbó K.Z.: Mikrochim. Acta1977 I, 375–384 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tompa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tompa, K., Bánki, P., Bokor, M. et al. Quadrupole effects in63Cu NMR spectroscopy of copper nanocrystals. Appl. Magn. Reson. 27, 93–107 (2004). https://doi.org/10.1007/BF03166305

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166305

Keywords

Navigation