Skip to main content
Log in

Quantum teleportation across a biological membrane by means of correlated spin pair dynamics in photosynthetic reaction centers

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In the process coined quantum teleportation the complete information contained in an input quantum stateΨ i is teleported to a distant location at which the original quantum state is regenerated as teleported output stateΨ i. This paper presents the proof-of-feasibility concept of a quantum teleportation experiment during which an arbitrary input quantum state is teleported across a biological membrane. As particular aspect it is emphasized that all essential subprocesses of the usual quantum teleportation scheme are suggested to be realized by free running reaction processes in a biological membrane-bound reaction center complex with only one significant adaptation required at the input side. The first process of generation of a spin-correlated (Einstein-Podolsky-Rosen) pair of particles (Bell-state source) is a naturally occurring process realized in photosynthetic reaction centers by the primary processes of light-induced charge separation across the membrane. The second process is the so-called Bell-state measurement, which is able to store the complete information of the input quantum state. It is suggested to be realized by a fast spin-dependent recombination between one pair partner spin and a properly engineered input spin. Under suitable recombination conditions the remaining second pair partner spin, situated at the receiver location on the other side of the membrane, is shown to end up in the quantum state identical to that of the initial input state due to the fixed spin correlation of the Bell-state source and the particular spin selectivity of the recombination process. Thus, the input (spin) quantum state is teleported from the spin near the (electron charge) donor side to the acceptor side of the membrane-bound photosynthetic reaction center complex. A comprehensive discussion is presented for this quantum teleportation concept using photosynthetic reaction centers as the quantum channel of communication. Standard electron paramagnetic resonance techniques can be used to set up the input state and read out or hand over the output state for subsequent quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wooters W.K.: Phys. Rev. Lett.70, 1895–1899 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Einstein A., Podolski B., Rosen N.: Phys. Rev.47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  3. Bouwmeester D., Pan J.-W., Mattle K., Eible M., Weinfurter H., Zeilinger A.: Nature390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Marcikic I., de Riedmatten H., Tittel W., Zbinden W., Gisin N.: Nature421, 509–513 (2003)

    Article  ADS  Google Scholar 

  5. Pan J.-W., Gasparoni S., Aspelmeyer M., Jennewein T., Zeilinger A.: Nature421, 721–724 (2003)

    Article  ADS  Google Scholar 

  6. Shih Y.H.: Ann. Phys. (Weinheim)10, 19–34 (2001)

    MATH  ADS  Google Scholar 

  7. Walther P., Zeilinger A.: Phys. Rev. A72, 010302(R) (2005); van Houwelingen J.A.W. Beveratos A., Brunner N., Gisin N., Zbinden H.: quant-ph/0604211 (28/4/2006)

    Article  ADS  Google Scholar 

  8. Nielsen M.A., Knill E., Laflamme R.: Nature396, 52–55 (1998)

    Article  ADS  Google Scholar 

  9. Riebe M., Häffner H., Roos C.F., Hänsel W., Benhelm J., Lancaster G.P.T., Körber T.W., Becher C., Schmidt-Kaler F., James D.F.V., Blatt R.: Nature429, 734–737 (2004)

    Article  ADS  Google Scholar 

  10. Barrett M.D., Chiaverini J., Schaetz T., Britton J., Itano W.M., Jost J.D., Knill E., Langer C., Leibfried, Ozeri R., Wineland D.J.: Nature429, 737–739 (2004)

    Article  ADS  Google Scholar 

  11. Tanzilli S., Tittel W., Halder M., Alibart O., Baldi P., Gisin N., Zbinden H.: Nature437, 116–120 (2005)

    Article  ADS  Google Scholar 

  12. Hoff A., Deisenhofer J.: Phys. Rep.287, 1–247 (1997)

    Article  ADS  Google Scholar 

  13. Stehlik D. in: Photosystem I: the Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Advances in Photosynthesis and Respiration, vol. 24 (Golbeck J.H., ed.), pp. 361–386. Dordrecht: Springer 2006.

    Google Scholar 

  14. Stehlik D., van der Est A., Kamlowski A.: Mol. Phys. Rep.13, 21–36 (1996)

    Google Scholar 

  15. Salikhov K.M.: Appl. Magn. Reson.25, 261–276 (2003)

    Article  Google Scholar 

  16. Salikhov K.M. in: Quantum Informatics 2004. Proceedings of the SPIE, vol. 5833 (Ozhigov Yu.I., ed.), pp. 52–61. Bellingham, Wash.: SPIE — the International Society for Optical Engineering 2005.

    Google Scholar 

  17. Hahn E.L.: Phys. Rev.80, 580 (1950)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salikhov, K.M., Golbeck, J.H. & Stehlik, D. Quantum teleportation across a biological membrane by means of correlated spin pair dynamics in photosynthetic reaction centers. Appl. Magn. Reson. 31, 237–252 (2007). https://doi.org/10.1007/BF03166259

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166259

Keywords

Navigation