Skip to main content

Molecular Spins in Biological Systems

  • Chapter
  • First Online:
Electron Spin Resonance (ESR) Based Quantum Computing

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 31))

Abstract

Quantum effects in biological systems have recently been studied extensively in the fields of quantum computing (QC) and quantum information processing (QIP). The focus of this review is on quantum coherences and entanglement properties created in natural photosynthesis, whose understanding may be crucial for achieving the remarkable efficiency of its excitation energy transfer. In the beginning, an overview of electron and energy transfer in photosynthetic reaction centers (RCs) and light-harvesting complexes (LHCs) is given. Then the physical aspects of spin-correlated radical pairs (SCRPs) are described, which are ubiquitous intermediates in a wide range of biochemical reactions. Examples are given mainly with relation to quantum coherences in RCs and LHCs, which persist at room temperature, since such long-lived quantum coherences are crucial for quantum information storage and manipulation. Where appropriate, experimental observations of quantum coherences in artificial molecular assemblies are also briefly surveyed. In the second part, site-directed spin-labeling and pulsed electron-electron double resonance (PELDOR or DEER) are described, which are becoming important techniques in QC/QIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Barz, E. Kashefi, A. Broadbent, J.F. Fitzsimons, Z. Zeilinger, P. Walther, Demonstration of blind quantum computing. Science 335, 303–308 (2012)

    Article  MathSciNet  Google Scholar 

  2. B.P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J.T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C.F. Roos, Universal digital quantum simulation with trapped ions. Science 334, 57–60 (2011)

    Article  Google Scholar 

  3. K.C. Nowack, M. Shafiei, M. Laforest, G.E.D.K. Prawiroatmodjo, L.R. Schreiber, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Single-shot correlations and two-qubit gate of solid-state spins. Science 333, 1269–1272 (2011)

    Article  Google Scholar 

  4. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M.S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011)

    Article  Google Scholar 

  5. G.D. Scholes, G.R. Fleming, A. Olaya-Castro, R. van Grondelle, Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011)

    Article  Google Scholar 

  6. S. Lloyd, A quantum of natural selection. Nat. Phys. 5, 164–166 (2010)

    Article  Google Scholar 

  7. N. Lambert, Y.N. Chen, Y.C. Cheng, C.M. Li, G.Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10–18 (2013)

    Article  Google Scholar 

  8. P. Ball, The dawn of quantum biology. Nature 474, 272–274 (2011)

    Article  Google Scholar 

  9. E. Romero, R. Augulis, V.I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle, Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014)

    Article  Google Scholar 

  10. A. Ishizakia, G.R. Fleminga, Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. U. S. A. 106, 17255–17260 (2009)

    Article  Google Scholar 

  11. G.S. Schlau-Cohen, A. Ishizaki, T.R. Calhoun, N.S. Ginsberg, M. Ballottari, R. Bassi, G.R. Fleming, Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012)

    Article  Google Scholar 

  12. H. Lee, Y.C. Cheng, G.R. Fleming, Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007)

    Article  Google Scholar 

  13. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mančal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  Google Scholar 

  14. G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram, E. Harel, J. Wen, R.E. Blankenship, G.S. Engel, Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. U. S. A. 107, 12766–12770 (2010)

    Article  Google Scholar 

  15. E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010)

    Article  Google Scholar 

  16. M. Mohseni, P. Rebentrost, S. Lloyd, A.A. Guzik, Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008)

    Article  Google Scholar 

  17. M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6, 462–467 (2010)

    Article  Google Scholar 

  18. G.D. Scholes, Green quantum computers. Nat. Phys. 6, 402–403 (2010)

    Article  Google Scholar 

  19. G. Panitchayangkoon, D.V. Voronine, D. Abramavicius, J.R. Caram, N.H.C. Lewis, S. Mukamel, G.S. Engel, Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl. Acad. Sci. U. S. A. 108, 20908–20912 (2011)

    Article  Google Scholar 

  20. E. Harel, G.S. Engel, Quantum coherence spectroscopy reveals complex dynamics in bacterial light harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. U. S. A. 109, 706–711 (2012)

    Article  Google Scholar 

  21. R. Hildner, D. Brinks, J.B. Nieder, R.J. Cogdell, N.F. van Hulst, Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013)

    Article  Google Scholar 

  22. E. Collini, Spectroscopic signatures of quantum-coherent energy transfer. Chem. Soc. Rev. 42, 4932–4947 (2013)

    Article  Google Scholar 

  23. D. Hayes, G.B. Griffin, G.S. Engel, Engineering coherence among excited states in synthetic heterodimer systems. Science 340, 1431–1434 (2013)

    Article  Google Scholar 

  24. C.A. Rozzi, S.M. Falke, N. Spallanzani, A. Rubio, E. Molinari, D. Brida, M. Maiuri, G. Cerullo, H. Schramm, J. Christoffers, C. Lienau, Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nat. Commun. 4, 1602 (2013)

    Article  Google Scholar 

  25. E. Collini, G.D. Scholes, Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009)

    Article  Google Scholar 

  26. S.M. Falke, C.A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau, Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014)

    Article  Google Scholar 

  27. S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S. van der Poll, G.C. Bazan, R.H. Friend, Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014)

    Article  Google Scholar 

  28. C.J. Brabec, N.S. Serdar Sariciftci, J.C. Hummelen, Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001)

    Article  Google Scholar 

  29. K.M. Salikhov, Potential of electron paramagnetic resonance to study Einstein-Podolsky-Rosen-Bohm pairs. Appl. Magn. Reson. 25, 261–276 (2003)

    Article  Google Scholar 

  30. K.M. Salikhov, J.H. Golbeck, D. Stehlik, Quantum teleportation across a biological membrane by means of correlated spin pair dynamics in photosynthetic reaction centers. Appl. Magn. Reson. 31, 237–252 (2007)

    Article  Google Scholar 

  31. Y.E. Kandrashkin, K.M. Salikhov, Numerical simulation of quantum teleportation across biological membrane in photosynthetic reaction centers. Appl. Magn. Reson. 37, 549–566 (2010)

    Article  Google Scholar 

  32. T. Berthold, E.D. von Gromoff, S. Santabarbara, P. Stehle, G. Link, O.G. Poluektov, P. Heathcote, C.F. Beck, M.C. Thurnauer, G. Kothe, Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700 +A1B in whole cells of the deuterated green alga chlamydomonas reinhardtii at cryogenic temperatures. J. Am. Chem. Soc. 134, 5563–5576 (2012)

    Article  Google Scholar 

  33. S. Santabarbara, I. Kuprov, W.V. Fairclough, S. Purton, P.J. Hore, P. Heathcote, M.C.W. Evans, Bidirectional electron transfer in photosystem I: determination of two distances between P700 + and A1 in spin-correlated radical pairs. Biochemistry 44, 2119–2128 (2005)

    Article  Google Scholar 

  34. P.J. Hore, D.A. Hunter, C.D. McKie, A.J. Hoff, Electron paramagnetic resonance of spin-correlated radical pairs in photosynthetic reactions. Chem. Phys. Lett. 137, 495–500 (1987)

    Article  Google Scholar 

  35. R. Bitt, G. Kothe, Transient EPR of radical pairs in photosynthetic reaction centers prediction of quantum beats. Chem. Phys. Lett. 177, 547–553 (1991)

    Article  Google Scholar 

  36. M. Gierer, A. van der Est, D. Stehlik, Transient EPR of weakly coupled spin-correlated radical pairs in photosynthetic reaction centres: increased spectral resolution from nutation analysis. Chem. Phys. Lett. 186, 238–247 (1991)

    Article  Google Scholar 

  37. G. Kothe, S. Weber, R. Bitt, E. Ohmes, M.C. Thurnauer, J.R. Norris, Transient EPR of light-induced radical pairs in plant photosystem I: observation of quantum beats. Chem. Phys. Lett. 186, 474–480 (1991)

    Article  Google Scholar 

  38. G. Zwanenburg, P.J. Hore, EPR of spin-correlated radical pairs. Analytical treatment of selective excitation including zero-quantum coherence. Chem. Phys. Lett. 203, 65–74 (1993)

    Article  Google Scholar 

  39. G. Kothe, S. Weber, E. Ohmes, M.C. Thurnauer, J.R. Norris, High time resolution electron paramagnetic resonance of light-induced radical pairs in photosynthetic bacterial reaction centers: observation of quantum beats. J. Am. Chem. Soc. 114, 1129–1134 (1994)

    Google Scholar 

  40. Z. Wang, J. Tang, J. Norris, The time development of the magnetic moment of correlated radical pairs. J. Magn. Reson. 97, 322–334 (1992)

    Google Scholar 

  41. G. Kothe, S. Weber, E. Ohmes, M.C. Thurnauer, J.R. Norris, Transient EPR of light-induced spin-correlated radical pairs: manifestation of zero quantum coherence. J. Phys. Chem. 98, 2706–2712 (1994)

    Article  Google Scholar 

  42. K. Maekawa, S. Nakazawa, H. Atsumi, D. Shiomi, K. Sato, M. Kitagawa, T. Takui, K. Nakatani, Programmed assembly of organic radicals on DNA. Chem. Commun. 46, 1247–1249 (2010)

    Article  Google Scholar 

  43. H. Atsumi, K. Maekawa, S. Nakazawa, D. Shiomi, D. Sato, M. Kitagawa, T. Takui, K. Nakatani, Tandem arrays of TEMPO and nitronyl nitroxide radicals with designed arrangements on DNA. Chem. Eur. J. 18, 178–183 (2012)

    Article  Google Scholar 

  44. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T. Takui, Triple-stranded metallo-helicates addressable as Lloyd’s electron spin qubits. J. Am. Chem. Soc. 132, 6944–6946 (2010)

    Article  Google Scholar 

  45. C.R. Timmel, J.R. Harmer (eds.), Structural Information from Spin-Labels and Intrinsic Paramagnetic Centers in the Biosciences. Structure and Bonding, vol. 152 (Springer, Berlin, 2014), pp. 1–332

    Google Scholar 

  46. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R.D. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Höfer, T. Takui, A synthetic two-spin quantum bit: g-engineered exchange-coupled biradical designed for controlled-NOT gate operations. Angew. Chem. Int. Ed. 51, 9860–9864 (2012)

    Article  Google Scholar 

  47. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. J. Mater. Chem. 19, 3739–3754 (2009)

    Article  Google Scholar 

  48. P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411, 909–917 (2001)

    Article  Google Scholar 

  49. M.V. Fedin, E.G. Bagryanskaya, H. Matsuoka, S. Yamauchi, S.L. Veber, K.Y. Maryunina, E.V. Tretyakov, V.I. Ovcharenko, R.Z. Sagdeev, W-band time-resolved electron paramagnetic resonance study of light-induced spin dynamics in copper-nitroxide-based switchable molecular magnets. J. Am. Chem. Soc. 134, 16319–16326 (2012)

    Article  Google Scholar 

  50. M. Tanabe, H. Matsuoka, Y. Ohba, S. Yamauchi, K. Sugisaki, K. Toyota, K. Sato, T. Takui, I. Goldberg, I. Saltsman, Z. Gross, Time-resolved electron paramagnetic resonance and phosphorescence studies of the lowest excited triplet states of Rh(III) corrole complexes. J. Phys. Chem. A 116, 9662–9673 (2012)

    Article  Google Scholar 

  51. J. Fujisawa, Y. Ohba, S. Yamauchi, A time-resolved electron paramagnetic resonance study of excited triplet porphyrins in fluid solution. J. Am. Chem. Soc. 119, 8736–8737 (1997)

    Article  Google Scholar 

  52. H. Matsuoka, L. Utschig, O. Poluektov, E. Ohmes, Y. Ohba, M.C. Thurnauer, G. Kothe, S. Yamauchi, W-band cw and pulse EPR studies of photosystem I reaction center, in 7th Asia-Pacific EPR/ESR Symposium 2010, p. 110

    Google Scholar 

  53. Y. Umena, K. Kawakami, J.R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–61 (2011)

    Article  Google Scholar 

  54. N. Kamiya, J.R. Shen, Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc. Natl. Acad. Sci. U. S. A. 100, 98–103 (2003)

    Article  Google Scholar 

  55. H. Matsuoka, J.R. Shen, A. Kawamori, K. Nishiyama, Y. Ohba, S. Yamauchi, Proton-coupled electron-transfer processes in photosystem II probed by highly resolved g-anisotropy of redox-active tyrosine Yz. J. Am. Chem. Soc. 133, 4655–4660 (2011)

    Article  Google Scholar 

  56. H. Matsuoka, K. Furukawa, T. Kato, H. Mino, J.R. Shen, A. Kawamori, g-Anisotropy of the S2-state manganese cluster in single crystals of cyanobacterial photosystem II studied by w-band electron paramagnetic resonance spectroscopy. J. Phys. Chem. B 110, 13242–13247 (2006)

    Article  Google Scholar 

  57. A. Kawamori, J.R. Shen, H. Mino, K. Furukawa, H. Matsuoka, T. Kato, in Photosynthesis: Fundamental Aspects to Global Perspectives, ed. by A. van der Est, D. Bruce (Allen Press, Lawrence, 2005), pp. 406–408

    Google Scholar 

  58. D. Leupold, B. Voigt, W. Beenken, H. Stiel, Pigment-protein architecture in the light-harvesting antenna complexes of purple bacteria: does the crystal structure reflect the native pigment-protein arrangement? FEBS Lett. 480, 73–78 (2000)

    Article  Google Scholar 

  59. P. Atkins, J. de Paula, Atkins’ Physical Chemistry, 8th edn. (Oxford University Press, Oxford, 2006), p. 856

    Google Scholar 

  60. T. Ritz, P. Thalau, J.B. Phillips, R. Wiltschko, W. Wiltschko, Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004)

    Article  Google Scholar 

  61. K. Maeda, K.B. Henbest, F. Cintolesi, I. Kuprov, C.T. Rodgers, P.A. Liddell, D. Gust, C.R. Timmel, P.J. Hore, Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008)

    Article  Google Scholar 

  62. G. Link, T. Berthold, M. Bechtold, J.U. Weidner, E. Ohmes, J. Tang, O. Poluektov, L. Utschig, S.L. Schlesselman, M.C. Thurnauer, G. Kothe, Structure of the P700 +A1 radical pair intermediate in photosystem I by high time resolution multifrequency electron paramagnetic resonance: analysis of quantum beat oscillations. J. Am. Chem. Soc. 123, 4211–4222 (2001)

    Article  Google Scholar 

  63. T. Takui, S. Nakazawa, H. Matsuoka, K. Furukawa, K. Sato, D. Shiomi, Molecule-based exchange-coupled high-spin clusters: conventional high-field/high-frequency and pulse-based electron spin resonance of molecule-based magnetically coupled systems, in EPR of Free Radicals in Solids II: Trends in Method and Applications, ed. by A. Lund, M. Shiotani, 2nd edn. (Springer, Dordrecht, 2012), pp. 71–162

    Chapter  Google Scholar 

  64. H. Matsuoka, K. Sato, D. Shiomi, T. Takui, 2D electron spin transient nutation spectroscopy of lanthanoid ion Eu2+(8S7/2) in a CaF2 single crystal on the basis of FT-pulsed electron spin resonance spectroscopy: transition moment spectroscopy. Appl. Magn. Reson. 23, 517–538 (2003)

    Article  Google Scholar 

  65. A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Wiley-VCH, Weinheim, 2011)

    Book  Google Scholar 

  66. H. Matsuoka, Toward Manipulation of Quantum Spin Information in Biomolecules, Quantum Cybernetics Newsletter, vol. 12, pp. 15, (2014)

    Google Scholar 

  67. C. Altenbach, T. Marti, H.G. Khorana, W.L. Hubbell, Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092 (1990)

    Article  Google Scholar 

  68. O.H. Griffith, H.M. McConnell, A nitroxide-maleimide spin label. Proc. Natl. Acad. Sci. U. S. A. 55, 8–11 (1966)

    Article  Google Scholar 

  69. S. Ogawa, H.M. McConnell, Spin label study of hemoglobin conformations in solution. Proc. Natl. Acad. Sci. U. S. A. 58, 19–26 (1967)

    Article  Google Scholar 

  70. L.J. Berliner, J. Grundwald, H.O. Hankovszky, K. Hideg, A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal. Biochem. 119, 450–455 (1982)

    Article  Google Scholar 

  71. M.R. Fleissner, E.M. Brustad, T. Kálái, C. Altenbach, D. Cascio, F.B. Peters, K. Hideg, S. Peuker, P.G. Schultz, W.L. Hubbell, Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc. Natl. Acad. Sci. U. S. A. 106, 21637–21642 (2009)

    Article  Google Scholar 

  72. M.J. Schmidt, J. Borbas, M. Drescher, D. Summerer, A genetically encoded spin label for electron paramagnetic resonance distance measurements. J. Am. Chem. Soc. 136, 1238–1241 (2014)

    Article  Google Scholar 

  73. G. Hagelueken, F.G. Duthie, N. Florin, E. Schubert, O. Schiemann, Expression, purification and spin labelling of the ferrous iron transporter FeoB from Escherichia coli BL21 for EPR studies. Protein Expr. Purif. 114, 30–36 (2015)

    Article  Google Scholar 

  74. A.J. Fielding, M.G. Concilio, G. Heaven, M.A. Hollas, New developments in spin labels for pulsed dipolar EPR. Molecules 19, 16998–17025 (2014)

    Article  Google Scholar 

  75. T. Kalai, W. Hubbell, K. Hideg, Click reactions with nitroxides. Synthesis 2009, 1336–1340 (2009)

    Article  Google Scholar 

  76. I. Krstic, R. Hänsel, O. Romainczyk, J.W. Engels, V. Dötsch, T.F. Prisner, Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. 50, 5070–5074 (2011)

    Article  Google Scholar 

  77. A.P. Jagtap, I. Krstic, N.C. Kunjir, R. Hänsel, T.F. Prisner, S.T. Sigurdsson, Sterically shielded spin labels for in-cell EPR spectroscopy: analsis of stability in reducing environments. Free Radic. Res. 49, 78–85 (2015)

    Article  Google Scholar 

  78. I.A. Kirilyuk, A.A. Bobko, I.A. Grigorev, V.V. Khramtsov, Synthesis of the tetraethyl substituted pH-sensitive nitroxides of imidazole series with enhanced stability towards reduction. Org. Biomol. Chem. 2, 1025–1030 (2004)

    Article  Google Scholar 

  79. S. Schreier, J.C. Bozelli, N. Marin, R.F.F. Vieira, C.R. Nakaie, The spin label amino acid TOAC and its use in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys. Rev. 4, 45–66 (2012)

    Article  Google Scholar 

  80. N. Florin, O. Schiemann, G. Hagelueken, High-resolution crystal structure of spin labelled (T21R1) azurin from Pseudomonas aeruginosa: a challenging structural benchmark for in silico spin labelling algorithms. BMC Struct. Biol. 14(16), 1–10 (2014)

    Google Scholar 

  81. L. Urban, H.J. Steinhoff, Hydrogen bonding to the nitroxide of protein bound spin labels. Mol. Phys. 111, 2873–2881 (2013)

    Article  Google Scholar 

  82. M.R. Fleissner, M.D. Bridges, E.K. Brooks, D. Cascio, T. Kalai, K. Hideg, W.L. Hubbell, Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 108, 16241–16246 (2011)

    Article  Google Scholar 

  83. G.W. Reginsson, N.C. Kunjir, S.T. Sigurdsson, O. Schiemann, Trityl radicals: spin labels for nanometer distance measurements. Chem. Eur. J. 18, 13580–13584 (2012)

    Article  Google Scholar 

  84. N.C. Kunjir, G.W. Reginsson, O. Schiemann, S.T. Sigurdsson, Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR. Phys. Chem. Chem. Phys. 15, 19673–19685 (2013)

    Article  Google Scholar 

  85. Z. Yang, Y. Liu, P. Borbat, J.L. Zweier, J.H. Freed, W.L. Hubbell, Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J. Am. Chem. Soc. 134, 9950–9952 (2012)

    Article  Google Scholar 

  86. D. Goldfarb, Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Phys. Chem. Chem. Phys. 16, 9685–9699 (2014)

    Article  Google Scholar 

  87. M. Qi, A. Gross, G. Jeschke, A. Godt, M. Drescher, Gd(III)-PyMTA label is suitable for in-cell EPR. J. Am. Chem. Soc. 136, 15366–15378 (2014)

    Article  Google Scholar 

  88. E. Matalon, T. Huber, G. Hagelueken, B. Graham, A. Feintuch, V. Frydman, G. Otting, D. Goldfarb, Angew. Chem. Int. Ed. 52, 11831–11834 (2013)

    Article  Google Scholar 

  89. H. Yagi, D. Banerjee, B. Graham, T. Huber, D. Goldfarb, O. Gottfried, J. Am. Chem. Soc. 133, 10418–10421 (2011)

    Article  Google Scholar 

  90. H.Y. Ching, P. Demay-Drouhard, H.C. Bertrand, C. Policar, L.C. Tabares, S. Un, Nanometric distance measurements between Mn(II)DOTA centers. Phys. Chem. Chem. Phys. 17(36), 23368–23377 (2015). doi:10.1039/c5cp03487f

    Article  Google Scholar 

  91. T.F. Cunningham, M.R. Putterman, A. Desai, W.S. Horne, S. Saxena, The double histidine Cu(II)-binding motif: a highly rigid, site-specific spin probe for ESR distance measurements. Angew. Chem. Int. Ed. 54, 6330–6334 (2015)

    Article  Google Scholar 

  92. A.V. Astashkin, H. Hara, A. Kawamori, The pulsed electro-electron double-resonance and 2-spin echo study of the oriented oxygen-evolving and mn-depleted preparations of photosystem-II. J. Chem. Phys. 108, 3805–3812 (1998)

    Article  Google Scholar 

  93. C. Elsässer, M. Brecht, R. Bittl, Pulsed electron-electron double resonance on multinuclear metal clusters: assignment of spin projection factors based on the dipolar interaction. J. Am. Chem. Soc. 124, 12606–12611 (2002)

    Article  Google Scholar 

  94. Z. Yang, M. Kurpiewski, M. Ji, J.E. Townsend, P. Mehta, L. Jen-Jacobson, S. Saxena, ESR spectroscopy identifies inhibitory Cu(II) sites in a DNA modifying enzyme to reveal determinants of catalytic specificity. Proc. Natl. Acad. Sci. U. S. A. 109, E993–E1000 (2012)

    Article  Google Scholar 

  95. D. Abdullin, N. Florin, G. Hagelueken, O. Schiemann, EPR-based approach for the localization of paramagnetic metal ions in biomolecules. Angew. Chem. Int. Ed. 54, 1827–1831 (2015)

    Article  Google Scholar 

  96. S. Milikisyants, F. Scarpelli, M.G. Finiguerra, M. Ubbink, M.A. Huber, Pulsed EPR method to determine distances between paramagnetic centers with strong spectral anisotropy and radicals: the dead-time free RIDME sequence. J. Magn. Reson. 201, 48–56 (2009)

    Article  Google Scholar 

  97. D. Abdullin, F. Duthie, A. Meyer, E.S. Müller, G. Hagelueken, O. Schiemann, Comparison of PELDOR and RIDME for distance measurements between nitroxides and low spin Fe(III) ions. J. Phys. Chem. B 119(43), 13534–13542 (2015). doi:10.1021/acs.jpcb.5b02118

    Article  Google Scholar 

  98. A.V. Astashkin, Mapping the structure of metalloproteins with RIDME. Methods Enzymol. 563, 251–284 (2015). doi:10.1016/bs.mie.2015.06.031

    Article  Google Scholar 

  99. R. Ward, O. Schiemann, Structural information from oligonucleotides. Struct. Bond. 152, 249–282 (2014)

    Article  Google Scholar 

  100. P.Z. Quin, I.S. Haworth, Q. Cai, A.K. Kusnetzow, G.P. Grant, E.A. Price, G.Z. Sowa, A. Popova, B. Herreos, H. He, Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nat. Protoc. 2, 2354–2365 (2007)

    Article  Google Scholar 

  101. O. Schiemann, A. Weber, T.E. Edwards, T.F. Prisner, S.T. Sigurdsson, Nanometer distance measurements on RNA using PELDOR. J. Am. Chem. Soc. 125, 3434–3435 (2003)

    Article  Google Scholar 

  102. N. Piton, Y. Mu, G. Stock, T.F. Prisner, O. Schiemann, J.W. Engels, Base-specific spin labeling of RNA for structure determination. Nucleic Acids Res. 35, 3128–3143 (2007)

    Article  Google Scholar 

  103. C. Giordano, F. Fratini, D. Attanasio, L. Cellai, Preparation of spin-labeled 2-amino-dA, dA, dC and 5-methyl-dC phosphoramidites for the automatic synthesis of EPR active oligonucleotides. Synthesis 4, 565–572 (2001)

    Article  Google Scholar 

  104. P. Ding, D. Wunnicke, H.J. Steinhoff, F. Seela, Site-directed spin-labeling of DNA by the azide-alkyne ‘click’ reaction: nanometer distance measurements on 7-deaza-2′-deoxyadenosin and 2′-deoxyuridine nitroxide conjugates spatially separated or linked to a ‘dA-dT’ base pair. Chem. Eur. J. 16, 14385–14396 (2010)

    Article  Google Scholar 

  105. O. Schiemann, P. Cekan, D. Margraf, T.F. Prisner, S.T. Sigurdsson, Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew. Chem. Int. Ed. 48, 3292–3295 (2009)

    Article  Google Scholar 

  106. G.W. Reginsson, S. Shelke, C. Rouillon, M.F. White, S.T. Sigurdsson, O. Schiemann, Protein-induced changes in DNA structure and dynamics observed with non-covalent site-directed spin-labelling and PELDOR. Nucleic Acids Res. 41(1), e11 (2013). doi:10.1093/nar/gks817

    Article  Google Scholar 

  107. S.A. Shelke, S.T. Sigurdsson, Site-directed nitroxide spin labeling of biopolymers. Struct. Bond. 152, 121–162 (2014)

    Article  Google Scholar 

  108. G.J. Shevlev, O.A. Krumkacheva, A.A. Lomzov, A.A. Kuzhelev, O.Y. Rogozhnikova, D.V. Trukhin, T.I. Troitskaya, V.M. Tormyshev, M.V. Fedin, D.V. Pyshnyi, E.G. Bagryanskaya, Physiological-temperature distance measurements in nucleic acids using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J. Am. Chem. Soc. 136, 9874–9877 (2014)

    Article  Google Scholar 

  109. X. Zhang, P. Cekan, S.T. Sigurdsson, P.Z. Qin, Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Methods Enzymol. 469, 303–328 (2009)

    Article  Google Scholar 

  110. O. Schiemann, T.F. Prisner, Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q. Rev. Biophys. 40, 1–53 (2007)

    Article  Google Scholar 

  111. P. Schöps, P.E. Spindler, A. Marko, T.F. Prisner, Broadband spin echoes and broadband SIFTER in EPR. J. Magn. Reson. 250, 55–62 (2015)

    Article  Google Scholar 

  112. A.D. Milov, K.M. Salikhov, M.D. Shirov, Application of ENDOR in electron-spin echo for paramagnetic center space distribution in solids. Fiz. Tverd. Tela 23, 975–982 (1981)

    Google Scholar 

  113. G. Jeschke, DEER distance measurements on proteins. Annu. Rev. Phys. Chem. 63, 419–446 (2012)

    Article  Google Scholar 

  114. G.W. Reginsson, O. Schiemann, Pulsed electron-electron double resonance on biomacromolecules: beyond nanometer distance measurements. Biochem. J. 434, 353–363 (2011)

    Article  Google Scholar 

  115. D. Margraf, P. Cekan, T. Prisner, S. Sigurdsson, O. Schiemann, Ferro- and antiferromagnetic exchange coupling constants in PELDOR spectra. Phys. Chem. Chem. Phys. 11, 6708–6714 (2009)

    Article  Google Scholar 

  116. K. Ayabe, K. Sato, S. Nakazawa, S. Nishida, K. Sugisaki, T. Ise, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, S. Suzuki, K. Okada, T. Takui, Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions. Mol. Phys. 111, 2767–2787 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support of the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB813 “Chemistry at Spin Centers.” This work was also supported by Grants-in-Aid for Scientific Research (C) and Scientific Research on Innovative Areas, “Quantum Cybernetics,” MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Schiemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Matsuoka, H., Schiemann, O. (2016). Molecular Spins in Biological Systems. In: Takui, T., Berliner, L., Hanson, G. (eds) Electron Spin Resonance (ESR) Based Quantum Computing. Biological Magnetic Resonance, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3658-8_3

Download citation

Publish with us

Policies and ethics