Skip to main content
Log in

Fatty acid binding site of mitochondrial uncoupling protein UCP2 as probed by EPR spectroscopy of spin-labeled fatty acids

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

An Erratum to this article was published on 03 June 2010

Abstract

Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled fatty acids was used to investigate their interaction withEscherichia coli-expressed human mitochondrial uncoupling protein UCP2 refolded from inclusion bodies in nonaethylene glycol monododecyl ether (C12E9) micelles. 5-DOXYL-stearic acid and 4-PROXYL-palmitic acid bound to UCP2 exhibited additional clearly separated h+1I, h−1I “immobile” peaks in the low- and high-field region, respectively, separated by 42 and 44 Gauss, and extensively reduced h+1M, h−1M “mobile” peaks, separated by about 30 G, whereas with 7-DOXYL-stearic acid the I and M peaks were smoothed together into one wide peak. Competition of 4-PROXYL-palmitic acid with added palmitic acid, arachidonic acid, and all-cis-8,11,14-eicosatrienoic acid and of 7-DOXYL-stearic acid with arachidonic acid was indicated by the disappearance of the h+1I, h−1I “immobile” peaks, whereas redistribution in micelles without protein was indicated by the rising of the h+1M, h−1M “mobile” peaks. In conclusion, a competition of palmitic, arachidonic, and eicosatrienoic acid within a putative fatty acid binding site was observed for mitochondrial uncoupling protein UCP2. This finding together with the observation of EPR spectra of highly immobilized probes exclusively in the presence of the recombinant UCP2 suggest the existence of a fatty acid binding site on UCP2 which is a prerequisite of the fatty acid cycling mechanism as previously postulated for UCP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ježek P.: J. Bioenerg. Biomembr.31, 457–466 (1999)

    Article  Google Scholar 

  2. Ježek P., Žáčková M., Růžička M., Škobisová E., Jabůrek M.: Physiol. Res.53, 199–211 (2004)

    Google Scholar 

  3. Cannon B., Nedergaard J.: Physiol. Rev.84, 277–359 (2004)

    Article  Google Scholar 

  4. Garlid K.D., Orosz D.E., Modrianský M., Vassanelli S., Ježek P.: J. Biol. Chem.271, 2615–2620 (1996)

    Article  Google Scholar 

  5. Ježek P., Špaček T., Garlid K.D., Jabůrek M.: Int. J. Biochem. Cell Biol.38, 1965–1974 (2006)

    Article  Google Scholar 

  6. Breen E.P., Gouin S.G., Murphy A.F., Haines L.R., Jackson A.M., Pearson T.W., Murphy P.V., Porter R.K.: J. Biol. Chem.281, 2114–2119 (2006)

    Article  Google Scholar 

  7. Skulachev V.P.: FEBS Lett.294, 158–162 (1991)

    Article  Google Scholar 

  8. Urbánková E., Voltchenko A., Pohl P., Ježek P., Pohl E.E.: J. Biol. Chem.278, 32497–32500 (2003)

    Article  Google Scholar 

  9. Beck V., Jabůrek M., Breen E.P., Porter R.K., Ježek P., Pohl E.E.: Biochim. Biophys. Acta1757, 474–479 (2006)

    Article  Google Scholar 

  10. Ježek P., Bauer M., Trommer W.E.: FEBS Lett.361, 303–307 (1995)

    Article  Google Scholar 

  11. Jakobs P., Braun A., Ježek P., Trommer W.E.: FEBS Lett.284, 195–198 (1991)

    Article  Google Scholar 

  12. Ježek P.: Int. J. Biochem. Cell Biol.34, 1190–1206 (2002)

    Article  Google Scholar 

  13. Andrews Z.B., Diano S., Horvath T.L.: Nat. Rev. Neurosci.6, 829–840 (2005)

    Article  Google Scholar 

  14. Krauss S., Zhang C-Y., Lowell B.B.: Nat. Rev. Mol. Cell Biol.6, 248–261 (2005)

    Article  Google Scholar 

  15. Brand M.D., Esteves T.C.: Cell Metab.2, 85–93 (2005)

    Article  Google Scholar 

  16. Mattiasson G., Sullivan P.G.: Antioxid. Redox Signal.8, 1–38 (2006)

    Article  Google Scholar 

  17. Nègre-Salvayre A., Hirtz C., Carrera G., Cazenave R., Troly M., Salvayere R., Penicaud L., Caisteila L.A.: FASEB J.11, 809–815 (1997)

    Google Scholar 

  18. Arsenijevic D., Onuma H., Pecqueur C., Raimbault S., Manning B.S., Miroux B., Couplan E., Alves-Guerra M.C., Goubern M., Surwit R., Bouillaud F., Richard D., Collins S., Ricquier D.: Nat. Genet.26, 435–439 (2000)

    Article  Google Scholar 

  19. Murphy M.P., Echtay K.S., Blaikie F.H., Asin-Cayuela J., Cochemé H.M., Green K., Buckingham J., Tailor E.R., Hurrell F., Hughes G., Miwa S., Cooper C.E., Svistunenko D.A., Smith R.A.J., Brand M.: J. Biol. Chem.278, 48534–48545 (2003)

    Article  Google Scholar 

  20. Jabůrek M., Miyamoto S., Di Mascio P., Garlid K.D., Ježek P.: J. Biol. Chem.279, 53097–53102 (2004)

    Article  Google Scholar 

  21. Žáčková M., Škobisová E., Urbánková E., Ježek P.: J. Biol. Chem.278, 20761–20769 (2003)

    Article  Google Scholar 

  22. Jabůrek M., Vařecha M., Gimeno R.E., Dembski M., Ježek P., Zhang M., Burn P., Tartaglia L.A., Garlid K.D.: J. Biol. Chem.274, 26003–26007 (1999)

    Article  Google Scholar 

  23. Jabůrek M., Garlid K.D.: J. Biol. Chem.278, 25825–31 (2003)

    Article  Google Scholar 

  24. Jekabsons M.B., Echtay K.S., Arechaga I., Brand M.D.: J. Bioenerg. Biomembr.35, 409–418 (2003)

    Article  Google Scholar 

  25. Regev O., Zana R.: J. Colloid Interface Sci.210, 8–17 (1999)

    Article  Google Scholar 

  26. Reboiras M.D., Marsh D.: Biochim. Biophys. Acta1063, 259–264 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00723-010-0143-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, N., Špaček, T., Ježek, J. et al. Fatty acid binding site of mitochondrial uncoupling protein UCP2 as probed by EPR spectroscopy of spin-labeled fatty acids. Appl. Magn. Reson. 30, 373–383 (2006). https://doi.org/10.1007/BF03166207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166207

Keywords

Navigation