Skip to main content
Log in

Towards an identification of chemically different flavin radicals by means of theirg-tensor

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Theg-tensors of two chemically different flavin mononucleotide (FMN) radicals, one of which is covalently bound via N(5) of its 7,8-dimethyl isoalloxazine moiety, and the other one non-covalently bound to mutant LOV domains of the blue-light receptor phototropin, LOV1 C57M and LOV2 C450A, respectively, have been determined by very high microwave frequency and high magnetic field electron paramagnetic resonance (EPR) performed at 360 GHz and 12.8 T. Due to the high spectral resolution of the frozen-solution continuous-wave EPR spectra, the anisotropy of theg-tensors could be fully resolved. By least-squares fittings of spectral simulations to expermental data, the principal values ofg have been established:g X=2.00554(5),g Y=2.00391(5), andg Z=2.00247(7) for the N(5)-alkyl-chain-linked FMN radical in LOV1 C57M-675, andg X=2.00427(5),g Y=2.00360(5), andg Z=2.00220(7) for the noncovalently bound FMN radical in LOV2 C450A-605. By a comparison of these values to the ones from the flavin adenine dinucleotide radicals in two photolyases, the radical in LOV2 C450A-605 could be clearly identified as a neutral FMN radical, FMNH. In contrast, LOV1 C57M-675 exhibits significantly shifted principal components ofg, the differences being caused by spin-orbit coupling of the nearby sulfur from the reactive methionine residue, and the modified chemical structure due to the covalent attachment at N(5) of the radical to the apoprotein. The results clearly show the potential of using theg-tensor as probe of the global electronic and chemical structure of protein-bound flavin radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karrer P., Köbner T., Salomon H., Zehender F.: Helv. Chim. Acta18, 266–272 (1935)

    Article  Google Scholar 

  2. Karrer P., Schöpp K., Benz F.: Helv. Chim. Acta18, 426–429 (1935)

    Article  Google Scholar 

  3. Massey V.: Biochem. Soc. Trans.28, 283–296 (2000)

    Article  Google Scholar 

  4. Miller S.M., Massey V., Ballou D., Williams C.H., Distefano M.D., Moore M.J., Walsh C.T.: Biochemistry29, 2831–2841 (1990)

    Article  Google Scholar 

  5. Briggs W.R., Huala E.: Annu. Rev. Cell Dev. Biol.15, 33–62 (1999)

    Article  Google Scholar 

  6. Christie J.M., Briggs W.R.: J. Biol. Chem.276, 11457–11460 (2001)

    Article  Google Scholar 

  7. Devlin P.F., Kay S.A.: Annu. Rev. Physiol.63, 677–694 (2001)

    Article  Google Scholar 

  8. Lin C., Shalitin D.: Annu. Rev. Plant Biol.54, 469–496 (2003)

    Article  Google Scholar 

  9. Sancar A.: Chem. Rev.103, 2203–2237 (2003)

    Article  Google Scholar 

  10. Lin C., Todo T.: Genome Biol.6, 220 (2005)

    Article  Google Scholar 

  11. Weber S.: Biochim. Biophys. Acta1707, 1–23 (2006)

    Google Scholar 

  12. Essen L.-O., Klar T.: Cell Mol. Life Sci.63, 1266–1277 (2006)

    Article  Google Scholar 

  13. Mewies M., McIntire W.S., Scrutton N.S.: Protein Sci.7, 7–20 (1998)

    Article  Google Scholar 

  14. Edmondson D.E., Newton-Vinson P.: Antioxid. Redox Signal.3, 789–806 (2001)

    Article  Google Scholar 

  15. Wagner M.A., Khanna P., Jorns M.S.: Biochemistry38, 5588–5595 (1999)

    Article  Google Scholar 

  16. Fraaije M.W., van den Heuvel R.H.H., van Berkel W.J.H., Mattevi A.: J. Biol. Chem.274, 35514–35520 (1999)

    Article  Google Scholar 

  17. Hassan-Abdallah A., Zhao G., Jorns M.S.: Biochemistry45, 9454–9462 (2006)

    Article  Google Scholar 

  18. Lim L.W., Shamala N., Mathews F.S., Steenkamp D.J., Hamlin R., Xuong N.H.: J. Biol. Chem.261, 15140–15146 (1986)

    Google Scholar 

  19. Huang L., Scrutton N.S., Hille R.: J. Biol. Chem.271, 13401–13406 (1996)

    Article  Google Scholar 

  20. Salomon M., Eisenreich W., Dürr H., Schleicher E., Knieb E., Massey V., Rüdiger W., Müller F., Bacher A., Richter G.: Proc. Natl. Acad. Sci. USA98, 12357–12361 (2001)

    Article  ADS  Google Scholar 

  21. Crosson S., Moffat K.: Proc. Natl. Acad. Sci. USA98, 2995–3000 (2001)

    Article  ADS  Google Scholar 

  22. Choong Y.S., Massey V.: J. Biol. Chem.256, 8671–8678 (1981)

    Google Scholar 

  23. Kottke T., Dick B., Fedorov R., Schlichting I., Deutzmann R., Hegemann P.: Biochemistry42, 9854–9862 (2003)

    Article  Google Scholar 

  24. Kay C.W.M., Feicht R., Schulz K., Sadewater P., Sancar A., Bacher A., Möbius K., Richter G., Weber S.: Biochemistry38, 16740–16748 (1999)

    Article  Google Scholar 

  25. Kay C.W.M., Bittl R., Bacher A., Richter G., Weber S.: J. Am. Chem. Soc.127, 10780–10781 (2005)

    Article  Google Scholar 

  26. Kay C.W.M. Schleicher E., Hitomi K., Todo T., Bittl R., Weber S.: Magn. Reson. chem.43, S96-S102 (2005)

    Article  Google Scholar 

  27. Schnegg A., Kay C.W.M., Schleicher E., Hitomi K., Todo T., Möbius K., Weber S.: Mol. Phys.104, 1627–1633 (2006)

    Article  ADS  Google Scholar 

  28. Bittl R., Kay C.W.M., Weber S., Hegemann P.: Biochemistry42, 8506–8512 (2003)

    Article  Google Scholar 

  29. Kay C.W.M., Schleicher E., Kuppig A., Hofner H., Rüdiger W., Schleicher M., Fischer M., Bacher A., Weber S., Richter G.: J. Biol. Chem.278, 10973–10982 (2003)

    Article  Google Scholar 

  30. Richter G., Weber S., Römisch W., Bacher A., Fischer M., Eisenreich W.: J. Am. Chem. Soc.127, 17245–17252 (2005)

    Article  Google Scholar 

  31. Crosson S., Moffat K.: Plant Cell14, 1067–1075 (2002)

    Article  Google Scholar 

  32. Fedorov R., Schlichting I., Hartmann E., Domratcheva T., Fuhrmann M., Hegemann P.: Biophys. J.84, 2474–2482 (2003)

    Article  Google Scholar 

  33. Holzer W., Penzkofer A., Fuhrmann M., Hegemann P.: Photochem. Photobiol.75, 479–487 (2002)

    Article  Google Scholar 

  34. Fuchs M.R., Prisner T.F., Möbius K.: Rev. Sci. Instrum.70, 3681–3683 (1999)

    Article  ADS  Google Scholar 

  35. Burghaus O., Rohrer M., Götzinger T., Plato M., Möbius K.: Meas. Sci. Technol.3, 765–774 (1992)

    Article  ADS  Google Scholar 

  36. Fuchs M., Schleicher E., Schnegg A., Kay C.W.M., Törring J.T., Bittl R., Bacher A., Richter G., Möbius K., Weber S.: J. Phys. Chem. B106, 8885–8890 (2002)

    Article  Google Scholar 

  37. Weber S., Kay C.W.M., Bacher A., Richter G., Bittl R.: ChemPhysChem6, 292–299 (2005)

    Article  Google Scholar 

  38. Schelvis J.P.M., Ramsey M., Sokolova O., Tavares C., Cecala C., Connell K., Wagner S., Gindt Y.M.: J. Phys. Chem. B107, 12352–12362 (2003)

    Article  Google Scholar 

  39. Weber S., Möbius K., Richter G., Kay C.W.M.: J. Am. Chem. Soc.123, 3790–3798 (2001)

    Article  Google Scholar 

  40. García J.I., Medina M., Sancho J., Alonso P.J., Gómez-Moreno C., Mayoral J.A., Martínez J.I.: J. Phys. Chem. A,106, 4729–4735 (2002)

    Article  Google Scholar 

  41. Barquera B., Morgan J.E., Lukoyanov D., Scholes C.P., Gennis R.B., Nilges M.J.: J. Am. Chem. Soc.125, 265–275 (2003)

    Article  Google Scholar 

  42. Kawamura T., Matsunami S., Yonezawa T.: Bull. Chem. Soc. Jpn.40, 1111–1115 (1967)

    Article  Google Scholar 

  43. Burghaus O., Plato M., Rohrer M., Möbius K., MacMillan F., Lubitz W.: J. Phys. Chem.97, 7639–7647 (1993)

    Article  Google Scholar 

  44. Isaacson R.A., Lendzian F., Abresch E.C., Lubitz W., Feher G.: Biophys. J.69, 311–322 (1995)

    Article  ADS  Google Scholar 

  45. Sinnecker S., Reijerse E., Neese F., Lubitz W.: J. Am. Chem. Soc.126, 3280–3290 (2004)

    Article  Google Scholar 

  46. Un S., Atta M., Fontecave M., Rutherford A.W.: J. Am. Chem. Soc.117, 10713–10719 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnegg, A., Okafuji, A., Bacher, A. et al. Towards an identification of chemically different flavin radicals by means of theirg-tensor. Appl. Magn. Reson. 30, 345–358 (2006). https://doi.org/10.1007/BF03166205

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166205

Keywords

Navigation