Skip to main content
Log in

Cytogenetic and FISH studies in myelodysplasia, acute myeloid leukemia, chronic lymphocytic leukemia and lymphoma

  • Cytogenetics
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Conventional cytogenetic studies are widely used today to diagnose and manage patients with hematological malignancies. The application of fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes helps to further define molecular subclasses and cytogenetic risk categories for patients with these disorders. Moreover, FISH permits analysis of proliferating (metaphase cells) and non-proliferating (interphase nuclei) cells, and is useful in establishing the percentage of neoplastic cells before and after therapy (minimal residual disease). For patients with myelodysplasia or acute myeloid leukemia, these chromosome techniques are important for accurate diagnosis and classification of disease and to help decide treatment and monitor response to therapy. Conventional cytogenetic studies have been problematic in chronic lymphocytic leukemia because the neoplastic cells divide infrequently. However, interphase FISH studies now permit detection of chromosome anomalies with prognostic significance in chronic lymphocytic leukemia. The World Health Organization recognizes that genetic anomalies are one of the most reliable criteria for classification of malignant lymphomas. New methods to extract individual nuclei from paraffin-embedded tissue are now available which permit the use of interphase FISH to detect important chromosome anomalies in lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dewald G, et al., Cytogenetic Studies in Neoplastic Hematologic Disorders. O: McClatchy, K., ed. Clinical Laboratory Medicine. Baltimore.Williams and Wilkens. 2002;658–685.

  2. Dewald GW, et al., Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia.Blood. 1998;91:3357–3365.

    PubMed  CAS  Google Scholar 

  3. Juliusson G, et al., Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities.N Engl J Med. 1990;323:720–724.

    PubMed  CAS  Google Scholar 

  4. Dohner H, et al., Genomic aberrations and survival in chronic lymphocytic leukemia.N Engl J Med. 2000;343:1910–1916.

    Article  PubMed  CAS  Google Scholar 

  5. Harris NL, et al. The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997.Mod Pathol. 2000;13:193–207.

    Article  PubMed  CAS  Google Scholar 

  6. Paternoster S, et al. A new method to extract nuclei from paraffin-embedded tissue to study lymphomas using interphase FISH. Am J Pathol. In Press.

  7. Dewald GW, et al. Cytogenetic and molecular genetic methods for diagnosis and treatment response in chronic granulocytic leukemia.Cancer Genetics & Cytogenetics. 1997;94:59–66.

    Article  CAS  Google Scholar 

  8. Jenkins RB, et al. Fluorescence in situ hybridizatiob: a sensitive method for trisomy 8 detection in bone marrow specimens.Blood. 1992;79:3307–3315.

    PubMed  CAS  Google Scholar 

  9. Dewald GW, et al. Fluorescence in situ hybridization with X and Y chromosome probes for cytogenetic studies on bone marrow cells after opposite sex transplantation.Bone Marrow Transplantation. 1993;12:149–154.

    PubMed  CAS  Google Scholar 

  10. Schad CR, et al. Efficacy of fluorescence in situ hybridization for detecting PML/RARA gene fusion in treated and untreated acute promyelocytic leukemia.Mayo Clinic Proceedings. 1994; 69:1047–1053.

    PubMed  CAS  Google Scholar 

  11. Juneau At, at al. Detection of RBI deletions by fluorescence in situ hybridization in malignant hematologic disorders.Cancer Genetics & Cytogenetics. 1998;103:117–123.

    Article  CAS  Google Scholar 

  12. Remstein ED, et al. MALT lymphomas with t(11∶18)(q21∶21) and MALT lymphomas with aneuploidy develop along different pathogenetic pathways.Am J Pathol. In Press.

  13. Jalal SM, et al. Detection of diagnostically critical, often hidden, anomalies in complex karyotype of haematological disorders using multicolour fluorescence in situ hybridization.Br J Haematol. 2001:112:975–980.

    Article  PubMed  CAS  Google Scholar 

  14. Knight SJ, et al. An optimized set of human telomere clones for studying telomere integrity and architecture.Am J Hum Genet. 2000;67:320–332.

    Article  PubMed  CAS  Google Scholar 

  15. Buno I, et al. A special fluorescent in situ, hybridization technique to study peripheral blood and assess the effectiveness of interferon therapy in chronic myeloid leukemia.Blood. 1998; 92:2315–2321.

    PubMed  CAS  Google Scholar 

  16. Schad CR, et al. Application of fluorescent in situ hybridization with X and Y chromosome specific probes to buccal smear analysis.Am J Med Genetics. 1996;66:187–192.

    Article  CAS  Google Scholar 

  17. Jenkins RB, et al. A cytogenetic study of 53 human gliomas.Cancer Genetics & Cytogenetics. 1989;39:253–279.

    Article  CAS  Google Scholar 

  18. Dewald GW, et al. The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL.Cancer Genetics & Cytogenetics. 1993;71:7–14.

    Article  CAS  Google Scholar 

  19. Jalal 5, et al. Atlas of Whole Chromosome Paint Probes: Normal Patterns and Utility for Abnormal Cases. Rochester, MN: Mayo Foundation for Medical Education and Research, p145, 1996.

  20. Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood. 1997;89:2079–2088.

    PubMed  CAS  Google Scholar 

  21. Knapp RH, et al. Cytogenetic studies in 174 consecutive patients with preleukemic or myelodysplastic syndromes.Mayo Clinic Proceedings. 1985;60:507–516.

    PubMed  CAS  Google Scholar 

  22. Pierre RV, et al. Clinical-cytogenetic correlations in myelodysplasia (preleukemia).Cancer Genetics & Cytogenetics. 1989; 40:149–161.

    Article  CAS  Google Scholar 

  23. Dewald G, et al. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplasia: an Eastern Cooperative Oncology Group (ECOG) study. 42nd Annual Meeting of the American Society of Hematology, San Francisco, 2000.

  24. Ketterling RP, et al. Primary myelodysplastic syndrome with normal cytogenetics: utility of ‘FISH panel testing’ and MFISH.Leuk Res. 2002;26:235–240.

    Article  PubMed  CAS  Google Scholar 

  25. Lillington DM, et al. Detection of chromosome abnormalities pre-high-dose treatment in patients developing therapy-related myelodysplasia and secondary acute myelogenous leukemia after treatment for non-Hodgkin’s lymphoma.Journal of Clinical Oncology. 2001;19:2472–2481.

    PubMed  CAS  Google Scholar 

  26. Abruzzese E, et al. Detection of abnormal pretransplant clones in progenitor cells of patients who developed myelodysplasia after autologous transplantation.Blood. 1999;94:1814–1819.

    PubMed  CAS  Google Scholar 

  27. Grimwade D, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties.Blood. 1998;92: 2322–2333.

    PubMed  CAS  Google Scholar 

  28. Slovak ML, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastem Cooperative Oncology Group Study.Blood. 2000;96:4075f083.

    Google Scholar 

  29. Schnittger S, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML.Leukemia. 2000;14:796–804.

    Article  PubMed  CAS  Google Scholar 

  30. Han T, et al. Prognostic importance of cytogenetic abnormalities in patients with chronic lymphocytic leukemia.New England Journal of Medicine. 1984;310:288–292.

    Article  PubMed  CAS  Google Scholar 

  31. Brito-Babapulle V, et al. The impact of molecular cytogenetics on chronic lymphoid leukaemia.Acta Haematologica. 1997;98: 175–186.

    Article  PubMed  CAS  Google Scholar 

  32. Fais F, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors.Journal of Clinical Investigation. 1998;102:1515–1525.

    Article  PubMed  CAS  Google Scholar 

  33. Damle RN, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia.Blood. 1999;94:1840–1847.

    PubMed  CAS  Google Scholar 

  34. Zhang Y, et al. Frequent deletions of 6q23–24 in B-cell non-Hodgkin’s lymphomas detected by fluorescence in situ hybridization.Genes Chromosomes & Cancer. 1997;18:310–313.

    Article  CAS  Google Scholar 

  35. Neilson JR, et al. Deletions at liq identify a subset of patients with typical CLL who show consistent disease progression and reduced survival.Leukemia. 1997;11:1929–1932.

    Article  PubMed  CAS  Google Scholar 

  36. El Rouby S, et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/M3 gene expression.Blood, 1993;82: 3452–3459.

    PubMed  CAS  Google Scholar 

  37. Finn WG KN, Kroft SH, Church S, Peterson LC. Secondary abnormalities of chromosome 6q in B-cell chronic lymphocytic leukemia: a sequential study of karyotypic instability in 51 Patients.Am J Hematol. 1998;59:223–229.

    Article  PubMed  CAS  Google Scholar 

  38. Juliusson G, et al. Chromosome aberrations in B-cell chronic lymphocytic leukemia. Pathogenetic and clinical implications.Cancer Genet Cytogenet. 1990;45:143–160.

    Article  PubMed  CAS  Google Scholar 

  39. Wyatt WA, et al. karyotype evolution and Rai stage in B-cell chronic lymphocytic lymphoma (B-CLL) [abstract]. 42nd Annual Meeting of the American Society of Hematology. San Francisco. December 2000.

  40. Meyer R, et al. Fluorescence-labeled DNA probes to study indolent and aggressive B-CLL: Comparison to Rai stage level of clonal B-cells, IgVH mutation status and conventional cytogenetics [abstract]. 43rd Annual Meeting of the American Society of Hematology. Orlando, FL. December 2001.

  41. Hamblin TJ, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia.Blood. 1999;94:1848–1854.

    PubMed  CAS  Google Scholar 

  42. Hamblin TJ et al. Immunoglobulin V genes and CD38 expression in CLL.Blood. 2000;95:2455–2457.

    PubMed  CAS  Google Scholar 

  43. Ibrahim S, et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia.Blood. 2001;98: 181–186.

    Article  PubMed  CAS  Google Scholar 

  44. Jelinek DF TR, Goyer SM, Bone ND, et al. Analysis of clonal B cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukemia.Br J Haematol. 2001;115:854–861.

    Article  PubMed  CAS  Google Scholar 

  45. Remstein ED, et al. Diagnostic utility of fluorescence in situ hybridization in mantle-cell lymphoma.Br J Haematol. 2000: 110:856–862.

    Article  PubMed  CAS  Google Scholar 

  46. Jaffe 55, et al. World Health Organization of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: International Agency for Research on Cancer, 2001.

    Google Scholar 

  47. Andreeff M, et al. Introduction to fluorescence in situ hybridization principles and clinical applications. New York: John Wiley & Sons, he., 455, 1999.

    Google Scholar 

  48. Pickering D, et al. Paraffin tissue core sectioning. An improved technique for whole nuclear extraction and interphase FISH.J Assoc Genet Technol. 2001;27:38–39.

    Google Scholar 

  49. Cataldo KA, et al. Detection of t(2∶5) in anaplastic large cell lymphoma: comparison of immunohistochemical studies, FISH, and RT-PCR in paraffin-embedded tissue.American Journal of Surgical Pathology. 1999;23:1386–1392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dewald W., G. Cytogenetic and FISH studies in myelodysplasia, acute myeloid leukemia, chronic lymphocytic leukemia and lymphoma. Int J Hematol 76 (Suppl 2), 65–74 (2002). https://doi.org/10.1007/BF03165090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165090

Keywords

Navigation