Skip to main content

Recurrent Cytogenetic Abnormalities in Non-Hodgkin’s Lymphoma and Chronic Lymphocytic Leukemia

  • Protocol
  • First Online:
Cancer Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1541))

Abstract

Characteristic chromosomal translocations are found to be associated with subtypes of B-cell non-Hodgkin lymphoma (NHL), for example t(8;14)(q24;q32) and Burkitt lymphoma, t(14;18)(q32;q21) and follicular lymphoma, and t(11;14)(q13;q32) in mantle cell lymphoma. Only few recurrent cytogenetic aberrations have been identified in the T-cell NHL and the best known is the ALK gene translocation t(2;5)(p23;q35) in anaplastic large cell lymphoma. Since lymph node or other tissue is seldom submitted for conventional cytogenetics study, alternative approaches for translocation detection are polymerase chain reaction (PCR) or fluorescence in situ hybridization (FISH). FISH is more sensitive than PCR in the detection of lymphoma translocations since directly labeled large FISH probes that span the translocation breakpoints are used. Although the recurrent chromosomal abnormalities in NHL are not completely sensitive and specific for disease entities, unlike the scenario in acute leukemia, cytogenetic and molecular genetic study is commonly used to aid lymphoma diagnosis and classification. Currently, the main clinical utility is in the employment of interphase FISH panels to predict disease aggressiveness to guide therapy, for example identification of double-hit lymphoma, or in prognostication, for example risk-stratification in chronic lymphocytic leukemia. The recent application of high-throughput sequencing to NHL not only advances the understanding of disease pathogenesis and classification, but allows the discovery of new drug targets, such as BRAF gene inhibition in hairy cell leukemia. Coupled with the increasing availability of novel molecular targeted therapeutic agents, the hope for the future is to translate the genetics and genomics information to achieve personalized medicine in NHL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization (WHO) classification of lymphoid neoplasms. Blood pii: blood-2016-01-643569

    Google Scholar 

  2. Belaud-Rotureau MA, Parrens M, Carrere N et al (2007) Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma. Hum Pathol 38(2):365–372

    Article  CAS  PubMed  Google Scholar 

  3. Espinet B, Bellosillo B, Melero C et al (2008) FISH is better than BIOMED-2 PCR to detect IgH/BCL2 translocation in follicular lymphoma at diagnosis using paraffin-embedded tissue sections. Leuk Res 32(5):737–742

    Article  CAS  PubMed  Google Scholar 

  4. van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    Article  PubMed  Google Scholar 

  5. Dohner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343(26):1910–1916

    Article  CAS  PubMed  Google Scholar 

  6. Mayr C, Speicher MR, Kofler DM et al (2006) Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 107(2):742–751

    Article  CAS  PubMed  Google Scholar 

  7. Byrd JC, Smith L, Hackbarth ML et al (2003) Interphase cytogenetic abnormalities in chronic lymphocytic leukemia may predict response to rituximab. Cancer Res 63(1):36–38

    CAS  PubMed  Google Scholar 

  8. Garg R, Wierda W, Ferrajoli A et al (2012) The prognostic difference of monoallelic versus biallelic deletion of 13q in chronic lymphocytic leukemia. Cancer 118(14):3531–3537

    Article  CAS  PubMed  Google Scholar 

  9. Zenz T, Eichhorst B, Busch R et al (2010) TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 28(29):4473–4479

    Article  PubMed  Google Scholar 

  10. Lozanski G, Heerema NA, Flinn IW et al (2004) Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 103(9):3278–3281

    Article  CAS  PubMed  Google Scholar 

  11. Pflug N, Bahlo J, Shanafelt TD et al (2014) Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 124(1):49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo Y, Karube K, Kawano R et al (2005) Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia 19(6):1058–1063

    Article  CAS  PubMed  Google Scholar 

  13. Katzenberger T, Kalla J, Leich E et al (2009) A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood 113(5):1053–1061

    Article  CAS  PubMed  Google Scholar 

  14. Fonseca R, Blood EA, Oken MM et al (2002) Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood 99(10):3735–3741

    Article  CAS  PubMed  Google Scholar 

  15. Treon SP, Cao Y, Xu L et al (2014) Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 123(18):2791–2796

    Article  CAS  PubMed  Google Scholar 

  16. Tiacci E, Trifonov V, Schiavoni G et al (2011) BRAF mutations in hairy-cell leukemia. N Engl J Med 364(24):2305–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A et al (2001) Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 357(9249):39–40

    Article  CAS  PubMed  Google Scholar 

  18. Rosenwald A, Wright G, Chan WC et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346(25):1937–1947

    Article  PubMed  Google Scholar 

  19. Meyer PN, Fu K, Greiner TC et al (2011) Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol 29(2):200–207

    Article  PubMed  Google Scholar 

  20. Scott DW, Wright GW, Williams PM et al (2014) Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood 123(8):1214–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boerma EG, Siebert R, Kluin PM et al (2009) Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of today's knowledge. Leukemia 23(2):225–234

    Article  CAS  PubMed  Google Scholar 

  22. So CC, Yung KH, Chu ML et al (2013) Diagnostic challenges in a case of B cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Int J Hematol 98(4):478–482

    Article  PubMed  Google Scholar 

  23. Friedberg JW (2012) Double-hit diffuse large B-cell lymphoma. J Clin Oncol 30(28):3439–3443

    Article  CAS  PubMed  Google Scholar 

  24. Tzankov A, Xu-Monette ZY, Gerhard M et al (2014) Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Mod Pathol 27(7):958–971

    Article  CAS  PubMed  Google Scholar 

  25. Pedersen MO, Gang AO, Poulsen TS et al (2014) MYC translocation partner gene determines survival of patients with large B-cell lymphoma with MYC- or double-hit MYC/BCL2 translocations. Eur J Haematol 92(1):42–48

    Article  CAS  PubMed  Google Scholar 

  26. Horn H, Ziepert M, Becher C et al (2013) MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 121(12):2253–2263

    Article  CAS  PubMed  Google Scholar 

  27. Hu S, Xu-Monette ZY, Tzankov A et al (2013) MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 121(20):4021–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bruggemann M, White H, Gaulard P et al (2007) Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies. Report of the BIOMED-2 Concerted Action BHM4 CT98-3936. Leukemia 21(2):215–221

    Article  CAS  PubMed  Google Scholar 

  29. Pascal V, Schleinitz N, Brunet C et al (2004) Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. Eur J Immunol 34(10):2930–2940

    Article  CAS  PubMed  Google Scholar 

  30. Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263(5151):1281–1284

    Article  CAS  PubMed  Google Scholar 

  31. Savage KJ, Harris NL, Vose JM et al (2008) ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 111(12):5496–5504

    Article  CAS  PubMed  Google Scholar 

  32. Gesk S, Martin-Subero JI, Harder L et al (2003) Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia 17(4):738–745

    Article  CAS  PubMed  Google Scholar 

  33. Feldman AL, Law M, Remstein ED et al (2009) Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia 23(3):574–580

    Article  CAS  PubMed  Google Scholar 

  34. Wada DA, Law ME, Hsi ED et al (2011) Specificity of IRF4 translocations for primary cutaneous anaplastic large cell lymphoma: a multicenter study of 204 skin biopsies. Mod Pathol 24(4):596–605

    Article  CAS  PubMed  Google Scholar 

  35. Feldman AL, Dogan A, Smith DI et al (2011) Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 117(3):915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vasmatzis G, Johnson SH, Knudson RA et al (2012) Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 120(11):2280–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parrilla Castellar ER, Jaffe ES, Said JW et al (2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124(9):1473–1480

    Article  PubMed  PubMed Central  Google Scholar 

  38. Streubel B, Vinatzer U, Willheim M et al (2006) Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia 20(2):313–318

    Article  CAS  PubMed  Google Scholar 

  39. Wlodarska I, Martin-Garcia N, Achten R et al (2002) Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosomes Cancer 33(3):243–251

    Article  CAS  PubMed  Google Scholar 

  40. Siu LL, Wong KF, Chan JK et al (1999) Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol 155(5):1419–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Siu LL, Chan V, Chan JK et al (2000) Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 157(6):1803–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iqbal J, Kucuk C, Deleeuw RJ et al (2009) Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 23(6):1139–1151

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, de RA, de LL et al (2010) Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 115(6):1226–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deleeuw RJ, Zettl A, Klinker E et al (2007) Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology 132(5):1902–1911

    Article  CAS  PubMed  Google Scholar 

  45. Cejkova P, Zettl A, Baumgartner AK et al (2005) Amplification of NOTCH1 and ABL1 gene loci is a frequent aberration in enteropathy-type T-cell lymphoma. Virchows Arch 446(4):416–420

    Article  CAS  PubMed  Google Scholar 

  46. Yoo HY, Kim P, Kim WS et al. (2016) Frequent CTLA4-CD28 gene fusion in diverse types of T cell lymphoma. Haematologica. pii: haematol.2015.139253

    Google Scholar 

  47. Lohr JG, Stojanov P, Lawrence MS et al (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A 109(10):3879–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang L, Lawrence MS, Wan Y et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365(26):2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tiacci E, Park JH, De CL et al (2015) Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N Engl J Med 373(18):1733–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond S. K. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ma, E.S.K. (2017). Recurrent Cytogenetic Abnormalities in Non-Hodgkin’s Lymphoma and Chronic Lymphocytic Leukemia. In: Wan, T. (eds) Cancer Cytogenetics. Methods in Molecular Biology, vol 1541. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6703-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6703-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6701-8

  • Online ISBN: 978-1-4939-6703-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics