Skip to main content
Log in

The use of ENDOR to identify the atomic structure of defects in diamond

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Although nearly 100 paramagnetic defects have been catalogued in diamond by spin Hamiltonian parameters measured by electron paramagnetic resonance (EPR), very few of these have been unambiguously associated with an atomic model. It has been necessary to use electron nuclear double resonance (ENDOR) to obtain enough information to make proper assignment of such models. The reason for the limitation of EPR, and the way in which ENDOR overcomes these limitations are discussed. The interpretation of hyperfine structure in terms of unpaired electrons in molecular orbitals, and of quadrupole interactions in terms of all electrons, paired and unpaired, as a source of information about molecular structure in diamond, is evaluated by reference to some well documented examples. The measurements so far made by ENDOR on defects in diamond are reviewed, and the salient contribution for the assignment of a model for each defect is explained. The details revealed by ENDOR considerably increase knowledge about defects, particularly those involving substitutional nitrogen atoms. This in turn helps in understanding the complex electron and atom, migration processes which go on under appropriate conditions of temperature and pressure, or optical excitation. The possibilities are discussed for using ENDOR to increase the number of well characterized centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridges F., Davies G., Robertson J., Stoneham A.M.: J. Phys. Condens. Matter2, 2875–2928 (1990); Ammerlaan C.A.J.: Landolt-Bornstein numerical Data and Functional Relationship in Science and Technology, New Series 111 (Madelung O., Schulz M., eds.),22b, pp.365–381. Berlin: Springer 1990.

    Article  ADS  Google Scholar 

  2. Weil J.A.: Phys. Chem. Minerals10, 149–177 (1984); Weil J.A.: Phys. and Chem. of SiO2 and the Si−SiO2 Interface (Helms C.R., Deal B.E., eds.),2, pp.131–144. New York: Plenum 1993.

    Article  ADS  Google Scholar 

  3. Ammerlaan C.I.J.: Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series 111 (Madelung O., Schulz M., eds.),22b, pp.117–206. Berlin: Springer 1990.

    Google Scholar 

  4. Spaeth J.-M., Niklas J.R., Bartram R.H.: Structural Analysis of Point Defects in Solids — An Introduction to Multiple Magnetic Resonance Spectroscopy. Berlin: Springer 1982.

    Google Scholar 

  5. Hayes W.: Crystals with the Fluorite Structure, chapters 4–6. OUP: Oxford 1974.

    Google Scholar 

  6. Nadolinny V.A., Yeliseyev A.P.: Diamond and Related Materials3, 17–21 (1993)

    Article  Google Scholar 

  7. Mainwood A., Larkins F.P., Stoneham A.M.: Solid State Electron.21, 1431–1433 (1979)

    Article  Google Scholar 

  8. Isoya J., Kanda H., Uchida Y., Lawson S.C., Yamasaki S., Itoh H., Morita Y.: Phys. Rev. B45, 1436–1439 (1992)

    Article  ADS  Google Scholar 

  9. Smith W.V., Sorokin P.P., Gelles I.L., Lasher G.J.: Phys. Rev.115, 1546–1552 (1959)

    Article  ADS  Google Scholar 

  10. Smith V.W., Gelles I.L., Sorokin P.P.: Phys. Rev. Lett.2, 39–40 (1959); Shcherbakova M.Ya., Soboleva E.E., Samsonenko N.D., Nadolinny V.A., Schastnev P.V., Semenov A.G.: Sov. Phys. Solid State13, 281–285 (1971)

    Article  ADS  Google Scholar 

  11. Feher G.: Phys. Rev.114, 1219–1244 (1959)

    Article  ADS  Google Scholar 

  12. Morton J.R., Preston K.F.: J. Magn. Reson.30, 577–582 (1978)

    Google Scholar 

  13. Edwards A.H., Fowler W.B.: Phys. Rev. B41, 10816–10823 (1990)

    Article  ADS  Google Scholar 

  14. Harvey J.S.M.: Proc. Roy. Soc. A285, 581–596 (1965)

    Article  ADS  Google Scholar 

  15. van Wyk J.A., Loubser J.H.N.: J. Phys. C16 1501–1506 (1983)

    Article  ADS  Google Scholar 

  16. Cook R.J., Whiffen G.H.: Proc. Roy. Soc. A295, 99–106 (1966)

    Article  ADS  Google Scholar 

  17. Cox A., Newton M.E., Baker J.M.: J. Phys. Condens. Matter6, 551–563 (1994)

    Article  ADS  Google Scholar 

  18. Tucker O.D., Newton M.E., Baker J.M.: private communication.

  19. O’Konshi C.T., Flautt T.J.: J. Chem. Phys.27, 815–816 (1957)

    Article  ADS  Google Scholar 

  20. Watkins G.D., Pound R.V.: Phys. Rev.85, 1062 (1952)

    Article  ADS  Google Scholar 

  21. Cox A., Newton M.E., Baker J.M.: J. Phys. Condens. Matter4, 8119–8130 (1992)

    Article  ADS  Google Scholar 

  22. Edmonds D.T., Hunt M.J., Mackay A.L.: J. Magn. Reson.9, 66–74 (1972)

    Google Scholar 

  23. Loubser J.H.N., van Ryneveld W.P.: Nature211, 517 (1966)

    Article  ADS  Google Scholar 

  24. Samoilovich M.I., Bezrukov G.N., Butuzov V.P.: JETP Lett.14, 379–380 (1971)

    ADS  Google Scholar 

  25. Isoya J., Kanda H., Norris J.R., Tang J., Bowman M.K.: Phys. Rev. B41, 3905–3913 (1990)

    Article  ADS  Google Scholar 

  26. Walker J.: Rep. Prog. Phys.42, 1605–1659 (1978) and references therein.

    Article  ADS  Google Scholar 

  27. Davies G.: Nature269, 498–500 (1997)

    Article  ADS  Google Scholar 

  28. Baldwin jr. J.A.: Phys. Rev. Lett.10, 220–222 (1963); Loubser J.H.N., van Wyk J.A.: Rep. Prog. Phys.41, 1202–1248 (1978)

    Article  ADS  Google Scholar 

  29. Barclie R.C., Guven J.: J. Phys. C: Solid State Phys.14, 3621–3631 (1981)

    Article  ADS  Google Scholar 

  30. Newton M.E., Baker J.M.: J. Phys. Condens. Matter1, 9801–9803 (1989)

    Article  ADS  Google Scholar 

  31. Shcherbakova M.Ya., Sobolev E.V., Nadolinny V.A.: Sov. Phys. Dokl.17, 513–516 (1972)

    ADS  Google Scholar 

  32. He X.-F., Manson N.B., Fisk P.T.H.: Phys. Rev. B47, 8816–8822 (1993)

    Article  ADS  Google Scholar 

  33. van Wyk J.A., Loubser J.H.N.: J. Phys. Condens. Matter5, 3019–3026 (1993)

    Article  ADS  Google Scholar 

  34. Loubser J.H.N., Wright A.C.J.: Diamond Research, Suppl. to Ind. Diamond Rev. p 16 (1973); Manson N.B., He X.-F., Fisk P.T.H.: J. Lumin.53, 49–55 (1992)

  35. Holliday K., He X.-F., Fisk P.T.H., Manson N.B.: Optics Letters15, 983 985 (1990)

    Google Scholar 

  36. Loubser J. H. N., van Wyk J.A.: Diamond Research, Suppl. to Ind. Diamond Rev., pp. 11–14 (1977)

  37. Reddy N.R.S., Manson N.B., Krausz E.R.: J. Lumin.38, 46–47 (1987); Bloch P.D., Brocklesby W.S., Harley R.T., Henderson M.J.: J. de Phys.C7, 527–530 (1985)

    Article  Google Scholar 

  38. Newton M.E., Baker J.M.: J. Phys. Condens. Matter1, 10549–10561 (1989)

    Article  ADS  Google Scholar 

  39. van Wyk J.A., Loubser J.H.N., Newton M.E., Baker J.M.: J. Phys. Condens. Matter4, 2651–2662 (1992)

    Article  ADS  Google Scholar 

  40. Shcherbakova M.Ya., Sobolev E.V., Samsonenko V.K., Aksenov V.K.: Sov. Phys. Solid. State11, 1104–1106 (1969); Loubser J.H.N., van Wyk J.A.: Mater. Res. Soc. Symp. Proc.46, 587–591 (1985)

    Google Scholar 

  41. Madiba C.P.P., Sellschop J.P.F., van Wyk J.A., Annegarn H.J.: private communication (1988)

  42. Newton M.E., Baker J.M.: J. Phys. Condens. Matter3, 3591–3603 (1991)

    Article  ADS  Google Scholar 

  43. Newton M.E., Baker J.A.: J. Phys. Condens. Matter3, 3605–3616 (1991)

    Article  ADS  Google Scholar 

  44. Shcherbakova M.Ya., Sobolev E.V., Samsonenko V.K., Aksenov V.K.: Sov. Phys. Dokl.20, 795–798 (1975); Welbourn C.M., Woods G.S.: private communication (1977)

    Google Scholar 

  45. Loubser J.H.N., Wright A.C.J.: J. Phys. D: Appl. Phys.6, 1129–1141 (1973)

    Article  ADS  Google Scholar 

  46. Loubser J.H.N., van Wyk J.A., Welbourn C.M.: J. Phys. C15, 6031–6036 (1983)

    Article  ADS  Google Scholar 

  47. van Wyk J.A.: private communication (1980); Loubser J.H.N.: private communication (1981)

  48. Loubser J.H.N.: private communication (1988)

  49. Nisida Y., Yamada Y., Uchiyama S., Mita Y., Nakashima T., Sato S.: private communication (1992)

  50. van Wyk J.A.: J. Phys.: Condens. Matter6, 801–810 (1994)

    Article  ADS  Google Scholar 

  51. Loubser J.H.N., van Wyk J.A.: S. Afr. J. Phys.10, 165–168 (1987)

    Google Scholar 

  52. Bagdasarayan V.S., Markosayan E.A., Matosyan M.A., Torosayan O.S., Sharosyan E.G.: Sov. Phys. Solid State17, 991 (1975)

    Google Scholar 

  53. McNeil D.A.C., Symons M.C.R.: J. Phys. Chem. Solids38, 397–400 (1977)

    Article  ADS  Google Scholar 

  54. van Wyk J.A., Loubser J.H.N.: Mater. Sci. Forum10–12, 923–925 (1986)

    Google Scholar 

  55. Cook R.J.: J. Sci. Instrum.43, 548–553 (1966)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, J.M., Newton, M.E. The use of ENDOR to identify the atomic structure of defects in diamond. Appl. Magn. Reson. 7, 209–235 (1994). https://doi.org/10.1007/BF03162613

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162613

Keywords

Navigation