Skip to main content
Log in

Single-crystal EPR studies of transition-metal ions in inorganic crystals at very high frequency

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) single-crystal rotation studies at very high frequency (249.9 GHz) of transition metal ions with electron spins greater than one-half are reported. At 249.9 GHz, the spectra are in the high-field limit despite large zero-field splittings. This leads to a considerable simplification of the spectra, and aids in their interpretation. Single-crystal 249.9 GHz EPR spectra of Ni2+ in Ni2CdCl6· 12H2O, Mn2+ (0.2%) in ZnV2O7, and Fe3+ (2%) in CaYA104 were recorded at 253 K in an external magnetic field of up to 9.2 T, along with those at X-band and Q-band frequencies at 295 K and lower temperatures. The goniometer used at 249.9 GHz for single-crystal rotation is based on a quasi-optical design and is an integral part of a special Fabry-Pérot resonator. The values of the spin-Hamiltonian parameters were estimated from a simultaneous fitting of all of the observed line positions at several microwave frequencies recorded at various orientations of each crystal with respect to the external magnetic field with least-squares fitting in conjunction with matrix diagonalization. Estimates of zero-field splitting parameterD at room temperature are: for Ni2+, about −31 GHz (site I) and about −7 GHz (site II); for Mn2+, about 6 GHz; and for Fe3+, about 29 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freed J.H.: Annu. Rev. Chem.51, 655 (2000)

    Article  Google Scholar 

  2. Misra S.K.: J. Magn. Reson.23, 406 (1976)

    Google Scholar 

  3. Lynch W.B., Boorse R.S., Freed J.H.: J. Am. Chem. Soc.115, 10909 (1993)

    Article  Google Scholar 

  4. Wood R.M., Stucker D.M., Jones L.M., Lynch W.B., Misra S.K., Freed J.H.: Inorg. Chem.38, 5384 (1999)

    Article  Google Scholar 

  5. Hagen W.R.: Coord. Chem. Rev.190-192, 209 (1999)

    Article  Google Scholar 

  6. Misra S.K.: Physica B240, 183 (1997)

    Article  ADS  Google Scholar 

  7. Goldberg D.P., Tesler J., Krzystek J., Montalban A.G., Brunei L.-C., Barrett A.G.H., Hoffman B.M.: J. Am. Chem. Soc.119, 8722 (1997)

    Article  Google Scholar 

  8. Allgeier J., Disselhorst J.J.J.M., Weber R.T., Wenkenbach W.Th., Schmidt J. in: Modern Pulse and Continuous Wave ESR (Kevan L., Bowman M.K., eds.), chap. 6. New York: Wiley 1990.

    Google Scholar 

  9. Haindl E., Möbius K., Oloff H.: Z. Naturforsch. A40, 169 (1985)

    ADS  Google Scholar 

  10. Schwartz D.A., Walter E.D., McIlwain S.J., Krymov V.N., Singel D.J.: Appl. Magn. Reson.16, 223 (1999)

    Google Scholar 

  11. Hill S., Dalai N.S., Brooks J.S.: Appl. Magn. Reson.16, 237 (1999)

    Google Scholar 

  12. Lynch W.B., Earle K.A., Freed J.H.: Rev. Sci. Instrum.59, 1345 (1988)

    Article  ADS  Google Scholar 

  13. Earle K.A., Budil D.E., Freed J.H. in: Advances in Magnetic and Optical Resonance (Warren W.S., ed.), vol. 19, pp. 253–323. New York: Academic Press 1996.

    Chapter  Google Scholar 

  14. Earle K.A., Freed J.H.: Appl. Magn. Reson.16, 247 (1999)

    Article  Google Scholar 

  15. Misra S.K., Misiak L.E., Chand P.: Physica B202, 31 (1994)

    Article  ADS  Google Scholar 

  16. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press 1970.

    Google Scholar 

  17. Gopal R., Calvo C.: Can. J. Chem.51, 1004 (1973)

    Article  Google Scholar 

  18. Brown J.J., Hummel F.A.: Trans. Br. Ceram. Soc.64, 419 (1965)

    Google Scholar 

  19. Stager C.V.: Can. J. Phys.46, 807 (1968)

    ADS  Google Scholar 

  20. Chambers J.G., Datars W.R., Calvo C.: J. Chem. Phys.41, 806 (1964)

    Article  ADS  Google Scholar 

  21. Ioffe V.A., Grunin V.S., Zonn Z.N., Ivanov S.E., Yanchevskaya I.S.: Izv. Akad Nauk SSSR, Neorg. Mater.13, 1843 (1977)

    Google Scholar 

  22. Misra S.K., Rudowicz C.Z.: Physica B147, 677 (1988)

    Google Scholar 

  23. Misra S.K. in: Handbook of Electron Spin Resonance (Poole C.P., Farach H.A. Jr., eds.), chap. VII, p. 115. New York: A.I.P. Press, Springer 1999.

    Google Scholar 

  24. Yamaga M., Macfarlane P.I., Holliday K., Henderson B., Kodama N., Inoue Y.: J. Phys. Condens. Matter8, 3487 (1996)

    Article  ADS  Google Scholar 

  25. Yamaga M., Yosida T., Naitoh Y., Kodama N.: J. Phys. Condens. Matter6, 4381 (1994)

    Article  ADS  Google Scholar 

  26. Yamaga M., Henderson B., Yosida T., Kodama N., Inoue Y.: Phys. Rev. B51, 3438 (1995)

    Article  ADS  Google Scholar 

  27. Yamaga M., Yosida T., Fukui M., Takeuchi H., Kodama N., Inoue Y., Henderson B., Holliday K., Macfarlan P.I.: J. Phys. Condens. Matter8, 10633 (1996)

    Article  ADS  Google Scholar 

  28. Misra S.K in: Instrumental Methods in Electron Magnetic Resonance (Bender C., Berliner L., eds.), vol. 18. Dordrecht: Kluwer Academic/Plenum Publications 2002, in press.

    Google Scholar 

  29. Clarkson R.B., Smirnov A.I., Smirnova T.I., Kang H., Belford R.L., Earle K.A., Freed J.H.: Mol. Phys.95, 1325 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, S.K., Andronenko, S.I., Earle, K.A. et al. Single-crystal EPR studies of transition-metal ions in inorganic crystals at very high frequency. Appl. Magn. Reson. 21, 549–561 (2001). https://doi.org/10.1007/BF03162428

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162428

Keywords

Navigation