Skip to main content
Log in

On the mode of hexacoordinated NO-binding to myo- and hemoglobin: Variable-temperature EPR studies at multiple microwave frequencies

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) spectroscopy is performed on NO-ligated hemo- and myoglobin at temperatures between 5 and 300 K. Apart from the standard X-band (9.5 GHz), data are taken at K-(24 GHz), Q-(34 GHz), W-(94 GHz) and Y-band (285 GHz) frequencies, respectively. The spectra are delineated into contributions of two EPR signatures differing ing-tensor symmetry, an axial and a rhombic one. The state contributions are found to differ with temperature and the states show temperature-dependentg-factor variations. In MbNO the axial species (denoted state II) is the only species observed at 300 K with X-band. Analysis of its development with decreasing temperature shows a partial transformation into a rhombic state (I). For this, at an intermediate temperature range (240–100 K), irregular line shapes are apparent, indicating disordered geometries of the Fe-NO-heme group. Regular rhombic lineshapes develop increasingly at temperatures below about 70 K. At 5–10 K, the rhombic state I dominates the EPR spectra but state II is still present. A similar development of spectra is observed in HbNO, for which, however, a rhombic contribution is already present at 300 K. Subunit-associated variations in state contributions and EPR appearance are not resolved at any frequency. Also, lineshape irregularities with decreasing temperature are not manifest in HbNO. These findings are used to present a structure-based picture of states I and II and their transformations and to discuss the origin of the line shape irregularities in MbNO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henry Y.A., Guissani A., Ducastel B.: Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds. Austin, Tex.: R.G.Landes, Berlin: Springer (1996)

    Google Scholar 

  2. Perutz M.F., Kilmartin J.V., Nagai K., Szabo A., Simon S.R.: Biochemistry15, 378–387 (1976)

    Article  Google Scholar 

  3. Maxwell J.C., Caughey W.C.: Biochemistry15, 388–396 (1976)

    Article  Google Scholar 

  4. Henry Y., Banerjee R.: J. Mol. Biol.73, 469–482 (1973)

    Article  Google Scholar 

  5. Cassoly R.: J. Mol. Biol.98, 581–595 (1975)

    Article  Google Scholar 

  6. Ignarro L.J.: Annu. Rev. Pharmacol. Toxicol.30, 535 (1990)

    Article  Google Scholar 

  7. Butler R.B., Williams D.L.H.: Chem. Soc. Rev.22, 233 (1993)

    Article  Google Scholar 

  8. Lancaster J.R. Jr.: Am. Sci.80, 248 (1992)

    ADS  Google Scholar 

  9. Snyder S.H., Bredt D.S.: Sci. Am.266, 68–71 (1992)

    Article  Google Scholar 

  10. Kerwin J.F. Jr., Lancaster J.R. Jr., Feldmann P.L.: J. Med. Chem,38, 4343–4362 (1995)

    Article  Google Scholar 

  11. Griffith O.W., Stuehr D.J.: Annu. Rev. Physiol.57, 707 (1995)

    Article  Google Scholar 

  12. Henry Y., Lepoivre M., Drapier J.-C., Ducroq C., Boucher J.-L., Guissani A.: FASEB J.7, 1124–1143 (1993)

    Google Scholar 

  13. Felisch M., Stamler J.S. (eds.): Methods in Nitric Oxide Research. Chichester: Wiley 1996.

    Google Scholar 

  14. Shiga T., Hwang K.-J., Tyuma I.: Biochemistry8, 378–383 (1969)

    Article  Google Scholar 

  15. Morse R.H., Chan S.I.: J. Biol. Chem.255, 7876–7882 (1980)

    Google Scholar 

  16. Höhn M., Hüttermann J., Chien J.C.W., Dickinson L.C.: J. Am. Chem. Soc.105, 109–115 (1983)

    Article  Google Scholar 

  17. Deatherage J.F., Moffat K.: J. Mol. Biol.134, 401–417 (1979)

    Article  Google Scholar 

  18. Rein H., Ristau O., Scheler W.: FEBS Lett.24, 24–26 (1972)

    Article  Google Scholar 

  19. Nagai K., Hori H., Yoshida S., Sakamoto H., Rokimoto H.: Biochim. Biophys. Acta532, 17–28 (1978)

    Google Scholar 

  20. Hüttermann J., Burgard C., Kappl R.: J. Chem. Soc. Faraday Trans.90, 3077–3087 (1994)

    Article  Google Scholar 

  21. Kappl R., Hüttermann J.: Isr. J. Chem.29, 73–84 (1989)

    Google Scholar 

  22. Dickinson L.C., Symons M.C.R.: Chem. Soc. Rev.12, 387 (1984)

    Article  Google Scholar 

  23. Wajnberg E., Linhares M.P., El-Jaick L.J., Bemski G.: Eur. Biophys. J.21, 57–61 (1992)

    Article  Google Scholar 

  24. Flores M., Wajnberg E., Bemski G.: Biophys. J.78, 2107–2115 (2000)

    Article  Google Scholar 

  25. Flores M., Wajnberg E., Bemski G.: Biophys. J.73, 3225–3229 (1997)

    Article  Google Scholar 

  26. Tyryshkin A.M., Dikanov S.A., Reiijerse E.J., Burgard C., Hüttermann J.: J. Am. Chem. Soc.121, 3396–3406 (1999)

    Article  Google Scholar 

  27. Wajnberg E., Bemski G., El-Jaick L.J., Alves O.C.: Int. J. Biol. Macromol.18, 231–235 (1996)

    Article  Google Scholar 

  28. Hori H., Ikeda-Saito M., Yonetani T.: J. Biol. Chem.256, 7849–7855 (1981)

    Google Scholar 

  29. Magliozzo R.S., McCracken J., Peisach J.: Biochemistry26, 7923–7931 (1987)

    Article  Google Scholar 

  30. Patchkovskii S., Ziegler T.: Inorg. Chem.39, 5334–5364 (2000)

    Article  Google Scholar 

  31. Weiland B., Hüttermann J.: Int. J. Radiat. Biol.74, 341–358 (1998)

    Article  Google Scholar 

  32. Eloranta J.: ftp://epr.chem.jyu.fi/pub/xemr (2001)

  33. Riederer H., Hüttermann J., Boon P., Symons M.C.R.: J. Magn. Reson.54, 54–66 (1983)

    Google Scholar 

  34. Brucker E.A., Olson J.S., Ikeda-Saito M., Phillips G.N.: Proteins Struct. Funct. Genet.30, 352–356 (1998)

    Article  Google Scholar 

  35. Chan N.L., Rogers P.H., Arnone A.: Biochemistry37, 16459–16464 (1998)

    Article  Google Scholar 

  36. Yonetani T., Yamamoto H., Erman J.E., Leigh J.S. Jr., Reed C.H.: J. Biol. Chem.247, 2447–2455 (1972)

    Google Scholar 

  37. Overkamp M., Twilfer H., Gersonde K.: Z. Naturforsch.31c, 524–533 (1976)

    Google Scholar 

  38. Vanin A.F.: Biochemistry (Moscow)63, 782–793 (1998)

    Google Scholar 

  39. Stamler J.S.: Cell78, 931–936 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, P.P., Kappl, R. & Hüttermann, J. On the mode of hexacoordinated NO-binding to myo- and hemoglobin: Variable-temperature EPR studies at multiple microwave frequencies. Appl. Magn. Reson. 21, 423–440 (2001). https://doi.org/10.1007/BF03162418

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162418

Keywords

Navigation