Skip to main content
Log in

High-frequency EPR approach to the electron spin-polarization effects observed in the photosynthetic reaction centers

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Time-resolved high-frequency electron paramagnetic resonance (EPR) spectroscopy was applied to study the structure and dynamics of the electron transfer pathways in the photosynthetic RC proteins. When the spin-polarized EPR spectra are recorded at the high field, the singlet-triplet mixing in the radical pairs becomes faster due to the increase of Zeeman interaction, and a sequential electron transfer polarization model, which includes both the primary and secondary radical pairs, should be considered. Application of the sequential electron transfer polarization model for the interpretation of the bacterial RC proteins with a “slow” electron transfer rate reveals the importance of the protein dynamics. It was shown that the reorganization energy for the electron transfer process between P +865 HQA and P +865 HQ A , but not the change in the structure of the donor-acceptor complex, is a dominant factor that alters the electron transfer rate. The relaxation data, obtained in the delay after laser flash experiment, have been used to estimate the magnetic interaction in the weakly coupled radical pair. High-frequency spin-polarized EPR spectra allow the quantitative characterization of isotopically labeled quinone exchange in the PS I reaction center proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ernst R.R., Bodenhausen G., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon 1987.

    Google Scholar 

  2. Weil J.A., Bolton J.R., Wertz J.E.: Electron Paramagnetic Resonance. Elementary Theory and Practical Applications. New York: Wiley 1994.

    Google Scholar 

  3. Dalton L.R., Bain A., Young C.L.: Annu. Rev. Phys. Chem.41, 389–407 (1990)

    Article  Google Scholar 

  4. Grinberg O.Ya., Dubinski A.A., Shuvalov V.F., Oranski L.G., Kurochkin V.I., Lebedev Ya.S.: Dokl. Phys. Chem. (Engl. Transi.)230, 923–928 (1976)

    Google Scholar 

  5. Lebedev Ya.S. in: Modern Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M.K., eds.), pp. 365–404. New York: Wiley 1990.

    Google Scholar 

  6. Grinberg O.Ya., Dubinski A.A., Poluektov O.G., Lebedev Ya.S. in: Bioactive Spin Labels (Zhdanov R.I., ed.), pp. 227–278. Heidelberg: Springer 1992.

    Google Scholar 

  7. Burghaus O., Haindl E., Plato M., Möbius K.: J. Phys. E18, 294–299 (1985)

    Article  ADS  Google Scholar 

  8. Burghaus O., Toth-Kischkat A., Klette R., Möbius K.: J. Magn. Reson.80, 383–388 (1988)

    Google Scholar 

  9. Lynch B., Earle K.A., Freed J.H.: Rev. Sci. Instrum.59, 1345–1351 (1988)

    Article  ADS  Google Scholar 

  10. Budil D.E., Earle K.A., Freed J.H., Lynch B. in: Advanced EPR. Applications in Biology and Biochemistry (Hoff A., ed.), pp. 307–340. Amsterdam: Elsevier 1989.

    Google Scholar 

  11. Allgeier J., Disselhorst J.A.J.M., Weber R.T., Wenckebach W.T., Schmidt J. in: Moderns Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M.K., eds.), pp. 267–283. New York: Wiley 1990.

    Google Scholar 

  12. Poluektov O.G., Schmidt J.: Bruker Rep.143, 34–37 (1996)

    Google Scholar 

  13. Barra A.L., Brunell L.-C., Robert J.B.: Chem. Phys. Lett.165, 107–109 (1990)

    Article  ADS  Google Scholar 

  14. Moll H.P., Kutter C., van Tol J., Wyder P.: J. Magn. Reson.137, 46–58 (1999)

    Article  ADS  Google Scholar 

  15. Stehlik D., Möbius K.: Annu. Rev. Phys. Chem.48, 739–778 (1997)

    Article  Google Scholar 

  16. Levanon H., Möbius K.: Annu. Rev. Biophys. Biomol. Struct.26, 495–540 (1997)

    Article  Google Scholar 

  17. Freed J.H.: Annu. Rev. Phys. Chem.51, 655–689 (2000)

    Article  Google Scholar 

  18. Snyder S.W., Thurnauer M.C. in: The Photosynthetic Reaction Center (Deisenhofer M., Norris J., eds.), pp. 285–329. New York: Academic Press 1993.

    Google Scholar 

  19. Angerhofer A., Bittl R.: Photochem. Photobiol.63, 11–38 (1996)

    Article  Google Scholar 

  20. Link G., Berthold T., Bechtold M., Weidner J.-U., Ohmes E., Tang J., Poluektov O., Utschig L., Schlesselman S.L., Thurnauer M.C., Kothe G.: J. Am. Chem. Soc.123, 4211–4222 (2001)

    Article  Google Scholar 

  21. Prisner T.F., van der Est A., Bittl R., Lubitz W., Stehlik D., Möbius K.: Chem. Phys.194, 361–370 (1995)

    Article  Google Scholar 

  22. Thumauer M.C., Norris J.R.: Chem. Phys. Lett.76, 557–561 (1980)

    Article  ADS  Google Scholar 

  23. Closs G.L., Forbes M.D.E., Norris J.R.: J. Phys. Chem.91, 3592–3599 (1987)

    Article  Google Scholar 

  24. Hore P.J. in: Advanced EPR. Applications in Biology and Biochemistry (Hoff A., ed.), pp. 371–403. Amsterdam: Elsevier 1989.

    Google Scholar 

  25. Norris J.R., Morris A.L., Thurnauer M.C., Tang J.: J. Chem. Phys.92, 4239–4249 (1990)

    Article  ADS  Google Scholar 

  26. Morris A.L., Snyder S.W., Zhang Y., Tang J., Thurnauer M.C., Dutton P.L., Robertson D.E., Gunner M.R.: J. Chem. Phys.99, 3854–3866 (1995)

    Article  Google Scholar 

  27. Hore P.H.: Mol. Phys.89, 1195–1202 (1996)

    ADS  Google Scholar 

  28. Tang J., Bondeson S., Thurnauer M.C.: Chem. Phys. Lett.253, 293–298 (1996)

    Article  Google Scholar 

  29. Kandrashkin Y.E., Salikhov K.M., Stehlik D.: Appl. Magn. Reson.12, 141–166 (1997)

    Article  Google Scholar 

  30. Tang J., Utschig L.M., Poluektov O., Thurnauer M.C.: J. Phys. Chem. B103, 5145–5150 (1999)

    Article  Google Scholar 

  31. Utschig L.M., Greenfield S.R., Tang J., Laible P.D., Thurnauer M.C.: Biochemistry36, 8548–8558 (1997)

    Article  Google Scholar 

  32. Xu Q., Gunner M.R.: Biochemistry40, 3232–3241 (2001)

    Article  Google Scholar 

  33. Steinhoff H.-J., Savitsky A., Wegener C., Pfeiffer M., Plato M., Möbius K.: Biochim. Biophys. Acta1457, 253–262 (2000)

    Article  Google Scholar 

  34. Borovykh I.V., Kulik L.V., Dzuba S.A., Hoff A.J.: Chem. Phys. Lett.338, 173–179 (2001)

    Article  ADS  Google Scholar 

  35. Tang J., Thurnauer M.C., Norris J.R.: Chem. Phys. Lett.219, 283–290 (1994)

    Article  ADS  Google Scholar 

  36. Dzuba S.A., Gast P., Hoff A.J.: Chem. Phys. Lett.236, 595–602 (1995)

    Article  ADS  Google Scholar 

  37. Dzuba S.A., Gast P., Hoff A.J.: Chem. Phys. Lett.268, 273–279 (1997)

    Article  ADS  Google Scholar 

  38. Dubinski A.A., Perekhotsev G.D., Poluektov O.G., Rajh T., Thurnauer M.C.: J. Phys. Chem. B (in press)

  39. Komiya H., Yeates T.O., Rees D.C., Allen J.P., Feher G.: Proc. Natl. Acad. Sci. USA85, 9012–9016 (1988)

    Article  ADS  Google Scholar 

  40. Ostafin A.E., Weber S.: Biochim. Biophys. Acta1320, 195–207 (1997)

    Article  Google Scholar 

  41. Crespi H.L.: Methods Enzymol.88, 3–5 (1982)

    Article  Google Scholar 

  42. Rustandi R.R., Snyder S.W., Biggins J., Norris J.R., Thurnauer M.C.: Biochim. Biophys. Acta1101, 311–320 (1992)

    Article  Google Scholar 

  43. Barkoff A., Brunkan N., Snyder S.W., Ostafin A., Werst M., Biggins J., Thurnauer M.C. in: Photosynthesis: From Light to Biosphere (Mathis P., ed.), vol. II, pp. 115–118. Dordrecht: Kluwer Academic Publishers 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poluektov, O.G., Utschig, L.M., Tang, J. et al. High-frequency EPR approach to the electron spin-polarization effects observed in the photosynthetic reaction centers. Appl. Magn. Reson. 21, 311–323 (2001). https://doi.org/10.1007/BF03162410

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162410

Keywords

Navigation