Skip to main content
Log in

Magnetic resonance investigations of phase transitions and modulation wave motions in incommensurate solids

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We measured87Rb nuclear magnetic resonance (NMR) and35Cl nuclear quadrupole resonance (NQR) Hahn spin-echo magnetization decays in the incommensurate (I) phase of Rb2ZnCl4 and, in each case, obtained a Hahn echo decay that was shorter than the Carr-Purcell-Meiboom-Gill decay and one which decayed with a time constant proportional to the cube of the echo time. From these measurements we obtained from both the87Rb NMR and35Cl NQR measurements values for the diffusion coefficients that are comparable in magnitude, a fact that strongly supports the existence of slow modulation wave diffusionlike motions in the I phase, since such motions should affect both Rb and Cl ions similarly. In addition, we used87Rb two-dimensional exchange-difference NMR to study atomic motions in the incommensurate (I) and paraelectric (P) phases to elucidate the nature of the I-P transition. We measured as a function of the mixing time the frequency shifts of the cross peaks from the main diagonal and observed a gradual increase towards an asymptotic value in the I phase but a sudden jump to the final value in the P phase. We interpreted the motions observed in the P phase as normal modes arising from simultaneous reorientations of ZnCl4 tetrahedra and corresponding Rb ions displacements between two sites. These normal modes freeze out in the I phase and change to the diffusionlike motion of the modulation wave. We also performed35Cl NQR lineshape andT 1 measurements in K2ZnCl4 and obtained conclusive evidence for the presence of a narrow 1q (singly modulated) I phase between 146 and 149 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blinc R.: Phys. Rep.79, 331–398 (1981)

    Article  ADS  Google Scholar 

  2. Ailion D.C., Norcross J.A.: Phys. Rev. Lett.74, 2383–2386 (1995)

    Article  ADS  Google Scholar 

  3. Papavassiliou G., Leventis A., Milia F., Dolinsek J.: Phys. Rev. Lett.74, 2387–2390 (1995)

    Article  ADS  Google Scholar 

  4. Papavassiliou G., Fardis M., Leventis A., Milia F., Dolinsek J., Apih T., Mikac M.U.: Phys. Rev. B55, 12161–12174 (1997)

    Article  ADS  Google Scholar 

  5. Takigawa M., Saito G.: J. Phys. Soc. Jpn.55, 1233–1243 (1986)

    Article  ADS  Google Scholar 

  6. Subramanian R.K., Muntean L., Norcross J.A., Ailion D.C.: Phys. Rev. B61, 996–1002 (2000)

    Article  ADS  Google Scholar 

  7. Cummins H.Z.: Phys. Rep.185, 323–327 (1990)

    Article  Google Scholar 

  8. Dolinsek J., Papavassiliou G.: Phys. Rev. B55, 8755–8765 (1997)

    Article  ADS  Google Scholar 

  9. Ernst R.R., Bodenhausen G., Wokaunn A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press 1987.

    Google Scholar 

  10. Quilichini M., Pannetier J.: Acta Crystallogr. B39, 657–663 (1983)

    Article  Google Scholar 

  11. Itoh K., Hinasada A., Natsunaga H., Nakamura E.: J. Phys. Soc. Jpn.52, 664–670 (1983)

    Article  ADS  Google Scholar 

  12. Itoh K., Hinesada A., Daiki M., Ando A., Nakamkura E.: Ferroelectrics66, 287 (1986)

    Google Scholar 

  13. Gesi K.: J. Phys. Soc. Jpn.59, 416–419 (1990)

    Article  ADS  Google Scholar 

  14. Grecu M.N., Cevc P., Blinc R.: Solid State Commun.105, 13–15 (1998)

    Article  ADS  Google Scholar 

  15. Hasebe K., Asahi T., Kasano H., Mashiyama H., Kishimoto S.: J. Phys. Soc. Jpn.63, 3340–3343 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muntean, L., Subramanian, R.K. & Ailion, D.C. Magnetic resonance investigations of phase transitions and modulation wave motions in incommensurate solids. Appl. Magn. Reson. 19, 403–411 (2000). https://doi.org/10.1007/BF03162383

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162383

Keywords

Navigation