Skip to main content
Log in

In situ conduction ESR and theoretical studies of graphite intercalation by nitric acid

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Results of an in situ conduction electron-spin resonance (CESR) study of HNO, molecule intercalation into highly oriented pyrolytic graphite (HOPG) plate with width being comparable with the graphite skin-depth governed by thec-axis conductivity are presented. The changes in the graphite CESR signal line shape, intensity and linewidth and the stepwise changes both of intensity and linewidth of CESR signal of intercalated sample were clearly detected during this reaction. Under the assumption that the graphite CESR signal evolution is caused by the advance of a boundary separating the intercalated and nonintercalated HOPG, the average value of spin reorientation probability during the collision of current carriers with this interface and the diffusion coefficient of nitric acid into the HOPG plate were extracted from experimental data. With the chemical potential versus intercalation time proposed by the authors for the experimental conditions, the stepwise changes of the CESR signal intensity of intercalated sample was calculated theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus M.S., Dresselhaus G.: Adv. Phys.30, 139–326 (1981)

    Article  ADS  Google Scholar 

  2. Solin S.A., Zabel H.: Adv. Phys.37, 87–254 (1988)

    Article  ADS  Google Scholar 

  3. Lagrange P., Herold A., Herold C: Mol. Cryst. Liq. Cryst.310, 33–41 (1998)

    Article  Google Scholar 

  4. Davidov R., Milo O., Palchan I., Selig H.: Synth. Met.8, 83–87 (1983)

    Article  Google Scholar 

  5. Palchan I., Davidov D., Zevin V., Polatsek G., Selig H.: Phys. Rev. B32, 5554–5557 (1985)

    Article  ADS  Google Scholar 

  6. Palchan I., Mustachi F., Davidov D., Selig H.: Synth. Met.10, 101–116 (1984/85)

    Article  Google Scholar 

  7. Nakajima M., Kawamura K., Tsuzuku T.: J. Phys. Soc. Jpn.57, 1572–1575 (1988)

    Article  ADS  Google Scholar 

  8. Ziatdinov A.M., Tsvetnikov A.K., Mishchenko N.M., Sereda V.V.: Mat. Sci. Forum91/93, 583–588 (1992)

    Article  Google Scholar 

  9. Ziatdinov A.M., Mishchenko N.M.: J. Phys. Chem. Solids58, 1167–1172 (1997)

    Article  ADS  Google Scholar 

  10. Dyson F.J.: Phys. Rev.98, 349–359 (1955)

    Article  MATH  ADS  Google Scholar 

  11. Ziatdinov A.M., Mishchenko N.M.: Phys. Solid State (Russia)36, 1283–1289 (1994)

    ADS  Google Scholar 

  12. Zevin V., Suss J.T.: Phys. Rev. B34, 7260–7270 (1986)

    Article  ADS  Google Scholar 

  13. Kodera H.: J. Phys. Soc. Jpn.28, 89–98 (1970)

    Article  ADS  Google Scholar 

  14. Saint Jean M., McRae E.: Phys. Rev. B43, 3969–3974 (1991)

    Article  ADS  Google Scholar 

  15. Ziatdinov A.M., Kainara V.V., Krivoshei A.N.: Mol. Cryst. Liq. Cryst., in press.

  16. Spain I.L.: Chemistry and Physics of Carbon, vol. 8, p. 119. New York: Marcel Dekker 1973.

    Google Scholar 

  17. Walker M.B.: Phys. Rev. B3, 30–41 (1971)

    Article  ADS  Google Scholar 

  18. Zhikarev V.A., Kessel A.P., Harahashyan E.G., Cherkasov F.G., Shvarz K.K.: Sov. Phys. JETP64, 1356–1366 (1973)

    Google Scholar 

  19. Nixon D.E., Parry G.S.: J. Phys. D1, 291–293 (1968)

    Article  ADS  Google Scholar 

  20. Falardeau E.R., Hanlon L.R., Thompson T.E.: Inorg. Chem.17, 301–308 (1978)

    Article  Google Scholar 

  21. Nishitani R., Uno Y., Suematsu H.: Synth. Met.7, 13–19 (1983)

    Article  Google Scholar 

  22. Misenheimer M.E., Zabel H.: Phys. Rev. Lett.54, 2521–2524 (1985)

    Article  ADS  Google Scholar 

  23. Nishitani R., Nishina Y., Hashimoto S., Iwasaki H.: Synth. Met.12, 161–166 (1985)

    Article  Google Scholar 

  24. Nishitani R., Sasaki Y., Nishina Y: J. Phys. Soc. Jpn.56, 1051–1057 (1987)

    Article  ADS  Google Scholar 

  25. Safran S.A.: Solid State Phys.40, 183–246 (1987)

    Article  Google Scholar 

  26. Winokur M.J., Clarke R.: Phys. Rev. Lett.56, 2072–2075 (1986)

    Article  ADS  Google Scholar 

  27. Nixon D.E., Parry G.S., Ubbelohde A.R.: Proc. R. Soc. London A291, 324–334 (1966)

    Article  ADS  Google Scholar 

  28. Parry G.S.: Mater. Sci. Eng.31, 99–104 (1977)

    Article  MathSciNet  Google Scholar 

  29. Shaked H., Pinto H., Melamud M.: Phys. Rev. B35, 838–843 (1987)

    Article  ADS  Google Scholar 

  30. Kirczenow G.: Phys. Rev. B31, 5376–5386 (1985)

    Article  ADS  Google Scholar 

  31. Alstrom P.: Solid State Commun.56, 1047–1050 (1985)

    Article  ADS  Google Scholar 

  32. Kirczenow G.: Phys. Rev. Lett.55, 2810–2813 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziatdinov, A.M., Skrylnik, P.G. In situ conduction ESR and theoretical studies of graphite intercalation by nitric acid. Appl. Magn. Reson. 18, 493–503 (2000). https://doi.org/10.1007/BF03162296

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162296

Keywords

Navigation