Skip to main content
Log in

A field-cycling NMR study of nematic 4-pentyl-4′-cyanobiphenyl confined in porous glasses

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The proton spin-lattice relaxation time T1, in the nematic liquid crystal 4-pentyl-4′-cyanobiphenyl confined in a glassy porous matrix has been measured in a wide Larmor frequency range of 1 · 102−2 · 107 Hz employing the fast field-cycling NMR technique. A strong influence of the restricted geometry on the character of the T1 dispersion was found. Our investigation clearly demonstrates the importance of the translationally induced molecular reorientations in inhomogeneous director field for the relaxation in the samples with 200 and 80 nm mean pore size. The experimental results are in a good agreement with the theoretical predictions. In the sample with 7 nm pore size the main contribution to the relaxation is ascribed to the slowing down of the molecular motion in the near-surface layer. Zero-field 1H NMR spectra of a microconfined liquid crystal are reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zummer S., Vilfan M., Vilfan I.: Liq. Cryst.3, 947–956 (1988)

    Article  Google Scholar 

  2. Golemme A., Zumer S., Doane J.W., Neubert M.E.: Phys. Rev. A37, 559–569 (1988)

    Article  ADS  Google Scholar 

  3. Vilfan I., Vilfan M., Zumer S.: Phys. Rev. A40, 4724–4730 (1989)

    Article  ADS  Google Scholar 

  4. Crawford G.P., Vilfan M., Doane J.W., Vilfan I.: Phys. Rev. A43, 835–842 (1991)

    Article  ADS  Google Scholar 

  5. Crawford G.P., Allender D.W., Doane J.W., Vilfan M., Vilfan I.: Phys. Rev. A44, 2570–2577 (1991)

    Article  ADS  Google Scholar 

  6. Kralj S., Lahajnar G., Zidansek A., Vrbancic-Kopac N., Vilfan M., Blinc R., Kosec M.: Phys. Rev. E48, 340–349 (1993)

    Article  ADS  Google Scholar 

  7. Ondris-Crafword R.J., Crafword G.P., Doane J.W., Zumer S., Vilfan M., Vilfan I.: Phys. Rev. E48, 1998–2005 (1993)

    Article  ADS  Google Scholar 

  8. Ambrozic M., Formozo P., Golemme A., Zumer S.: Phys. Rev. E56, 1825–1832 (1997)

    Article  ADS  Google Scholar 

  9. Kralj S., Zidansek A., Lahajnar G., Zumer S., Blinc R.: Phys. Rev. E57, 3021–3032 (1998)

    Article  ADS  Google Scholar 

  10. Iannacchione G.S., Qian S., Finotello D., Aliev F.M.: Phys. Rev. E56, 554–561 (1997)

    Article  ADS  Google Scholar 

  11. Zumer S., Kralj S., Vilfan M.: J. Chem. Phys.91, 6411–6420 (1989)

    Article  ADS  Google Scholar 

  12. Zax D.B. in: Encyclopedia of Nuclear Magnetic Resonance (Grant D.M., Harris R.K., eds.), pp. 5052–5063. London: Wiley 1996.

    Google Scholar 

  13. Grinberg F., Kimmich R.: J. Chem. Phys.103, 365–370 (1995)

    Article  ADS  Google Scholar 

  14. Grinberg F., Kimmich R.: J. Chem. Phys.105, 3301–3306 (1996)

    Article  ADS  Google Scholar 

  15. Vilfan M., Rutar V., Zumer S., Lahajnar G., Blinc R., Doane J.W., Golemme A.: J. Chem. Phys.89, 597–604 (1988)

    Article  ADS  Google Scholar 

  16. Schwarze-Haller D., Noack F., Vilfan M., Crawford G.P.: J. Chem. Phys.105, 4823–4832 (1996)

    Article  ADS  Google Scholar 

  17. Dolinsek J., Jarh O., Vilfan M., Zumer S., Blinc R., Doane J.W., Crafword G.: J. Chem. Phys.95, 2154–2161 (1991)

    Article  ADS  Google Scholar 

  18. Vrbancic N., Vilfan M., Blinc R., Dolinsek J., Crafword G.P., Doane J.W.: J. Chem. Phys.98, 3540–3547 (1993)

    Article  ADS  Google Scholar 

  19. Jarh O., Vilfan M.: Liq. Cryst.22, 61–64 (1997)

    Article  Google Scholar 

  20. Ziherl P., Vilfan M., Zummer S.: Phys. Rev. E52, 690–701 (1995)

    Article  ADS  Google Scholar 

  21. de Gennes P.G.: The Physics of Liquid Crystals, p. 82. Oxford: Clarendon Press 1974.

    Google Scholar 

  22. Dvinskikh S.V., Molchanov Yu.V., Filippov S.R.: Instrum. Exp. Tech.31, 1287–1290 (1988)

    Google Scholar 

  23. Terekhov M.V., Dvinskikh S.V.: Instrum. Exp. Tech.39, 452–457 (1996)

    Google Scholar 

  24. Noack F.: Prog. NMR Spec.18, 171–276 (1986)

    Article  Google Scholar 

  25. Noack F., Notter M., Weiss W.: Liq. Cryst.3, 907–925 (1988)

    Article  Google Scholar 

  26. Sebastiao P.J., Ribeiro A.C., Nguyen H.T., Noack F.: Z. Naturforsch.48a, 851–860 (1993)

    Google Scholar 

  27. Struppe J., Noack F.: Liq. Cryst.20, 595–606 (1996)

    Article  Google Scholar 

  28. Iannacchione G.S., Crafword G.P., Qian S., Doane J.W., Finotello D., Zumer S.: Phys. Rev. E53, 2402–2411 (1996)

    Article  ADS  Google Scholar 

  29. Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon Press 1962.

    Google Scholar 

  30. Noack F., Becker St., Struppe J.: Annu. Rep. NMR Spectrosc.33, 1–36 (1997)

    Article  Google Scholar 

  31. Stapf S., Kimmich R., Seitter R.-O., Maklakov A.I., Skirda V.D.: Colloids and Surfaces115, 107–114 (1996)

    Article  Google Scholar 

  32. Kimmich R., Stapf S., Maklakov A.I., Skirda V.D., Khozina E.V.: Magn. Res. Imaging14, 793–797 (1996)

    Article  Google Scholar 

  33. Kimmich R., Zavada T., Stapf S.: Mat. Res. Soc. Symp. Proc.464, 313–324 (1997)

    Google Scholar 

  34. Rommel E., Noack F., Meier P., Kothe G.: J. Phys. Chem.92, 2981–2987 (1988)

    Article  Google Scholar 

  35. Blinc R., Hogenboom D., O’Reilly D., Petersen E.: Phys. Rev. Lett.23, 969–971 (1969)

    Article  ADS  Google Scholar 

  36. Pincus P.: Solid State Commun.7, 415–417 (1969)

    Article  ADS  Google Scholar 

  37. Zupancic I., Zagar V., Rozmarin R., Levstic I., Kogovsik F., Blinc R.: Solid State Commun.18, 1591–1593 (1976)

    Article  ADS  Google Scholar 

  38. Kollner R., Schweikert K.H., Noack F., Zimmerman H.: Liq. Cryst.13, 483–498 (1993)

    Article  Google Scholar 

  39. Zumer S., Vilfan M.: J. Phys.46, 1763–1722 (1985)

    Google Scholar 

  40. Dvinskikh S.: Thesis. St.-Petersburg State University, St.-Petersburg, 1989.

    Google Scholar 

  41. Karat P.P., Madhusudana N.V.: Mol. Cryst. Liq. Cryst.36, 51–64 (1976)

    Article  Google Scholar 

  42. Skarp K., Lagerwall S.T., Stebbler B.: Mol. Cryst. Liq. Cryst.60, 215–236 (1980)

    Article  Google Scholar 

  43. Hakemi H., Jagodzinski E.F., DuPre D.B.: J. Chem. Phys.78, 1513–1518 (1983)

    Article  ADS  Google Scholar 

  44. Lewis J.S., Tomchuk E., Bock E.: Can. J. Phys.65, 115–121 (1987)

    ADS  Google Scholar 

  45. Kneppe H., Schneider F., Sharma N.K.: J. Chem. Phys.77, 3202–3208 (1982)

    Article  ADS  Google Scholar 

  46. Siedler L.T.S., Hyde A.J., Pethrick R.A., Leslie F.M.: Mol. Cryst. Liq. Cryst.90, 255 (1983)

    Article  Google Scholar 

  47. Chmielewski A.G.: Mol. Cryst. Liq. Cryst.132, 339 (1986)

    Article  Google Scholar 

  48. Gotzig H., Grunenberg-Hassanein S., Noack F.: Z. Naturforsch.49a, 1179–1187 (1994)

    Google Scholar 

  49. Stapf S., Kimmich R., Niess J.: J. Appl. Phys.75, 529–537 (1994)

    Article  ADS  Google Scholar 

  50. Bloembergen N., Pursell E.M., Pound R.V.: Phys. Rev.73, 679–712 (1948)

    Article  ADS  Google Scholar 

  51. Pfeifer H.: NMR Basic Princ. Prog.7, 53–153 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhov, M.V., Dvinskikh, S.V. & Privalov, A.F. A field-cycling NMR study of nematic 4-pentyl-4′-cyanobiphenyl confined in porous glasses. Appl. Magn. Reson. 15, 363–381 (1998). https://doi.org/10.1007/BF03162022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162022

Keywords

Navigation