Skip to main content
Log in

Concepts in high-frequency EPR — Applications to bio-inorganic systems

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this contribution we describe a high-frequency high-field EPR facility which has been developed at the University of Nijmegen. We present the design of a heterodyne quasi-optical bridge based on a millimeter-wave vector network analyzer as source and detection system. The mm-waves are transported in free-space through Gaussian beam optic elements and through a corrugated guide inside the resonator insert. The Fabri-Pérot (TEM00n) resonator is coupled through a metallic mesh and because of its bimodal property it can be operated using orthogonal detection leading to substantial improvement in sensitivity. In the first stage of the project, a multifrequency CW-facility is realized covering the 100–500 GHz range. In our initial explorative experiments we demonstrate the advantages of HF-EPR of high-spin systems: Due to the large microwave quantum, transitions which would be undetectable at X-band due to the large zerofield splitting can now be observed in good sensitivity. As a model for biological high-spin systems a sample of metmyoglobin was measured at D-band (130 GHz). Theg = 5.9 perpendicular line from theS = 5/2 ferric heme was detected and its line-width was compared to data previously obtained at Q-, X-, S- and L-band. As a model for biological integer spin systems theS = 1 signal of Ni(II) in nickel Tutton salt (Ni(NH4)2(SO4)2) was studied at 35 and 130 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebedev Y.: Appl. Magn. Reson.7, 339–362 (1994)

    Article  Google Scholar 

  2. Earle K., Tipikin D., Freed J.: Rev. Sci. Instrum.67, 2502–2513 (1996)

    Article  ADS  Google Scholar 

  3. Disselhorst J., Vandermeer H., Poluektov O., Schmidt J.: J. Magn. Reson. Ser. A115, 183–188 (1995)

    Article  Google Scholar 

  4. Brunei L.: Appl. Magn. Reson.11, 417–423 (1996)

    Article  Google Scholar 

  5. Burghaus O., Rohrer M., Gotzinger T., Plato M., Mobius K.: Meas. Sci. Technol.3, 765–774 (1992)

    Article  ADS  Google Scholar 

  6. Prisner T., Rohrer M., Mobius K.: Appl. Magn. Reson.7, 167–183 (1994)

    Article  Google Scholar 

  7. Wang W., Belford R., Clarkson R., Davis P., Forrer J., Nilges M., Timken M., Walczak T., Thurnauer M., Norris J., Morris A., Zhang Y.: Appl. Magn. Reson.6, 195–215 (1994)

    Article  Google Scholar 

  8. Prisner T., Un S., Griffin R.: Isr. J. Chem.32, 357–363 (1992)

    Google Scholar 

  9. Becerra L., Gerfen G., Temkin R., Singel D., Griffin R.: Phys. Rev. Lett.71, 3561–3564 (1993)

    Article  ADS  Google Scholar 

  10. Becerra L., Gerfen G., Bellew B., Hall D.A.J.B., Inati S., Weber R., Un S., Prisner T., Mcdermott A., Fishbein K., Kreischer K., Temkin R., Griffin D.S.R.: J. Magn. Reson. Ser. A117, 28–40 (1995)

    Article  Google Scholar 

  11. Smith G., Lesurf J., Mitchell R., Riedi P.: IEEE Transactions on Microwave Theory and Techniques, Symposium Proceedings (IEEE MTT-S), pp. 1677–1680. Orlando 1995.

  12. Mobius K.: Appl. Magn. Reson.9, 389–407 (1995)

    Google Scholar 

  13. Rohrer M., Plato M., Macmillan F., Grishin Y., Lubitz W., Mobius K.: J. Magn. Reson. Ser. A116, 59–66 (1995)

    Article  Google Scholar 

  14. Bennebroek M., Poluektov O., Zakrzewski A., Baranov P., Schmidt J.: Phys. Rev. Lett.74, 442–445 (1995)

    Article  ADS  Google Scholar 

  15. Coremans J., Poluektov O., Groenen E., Canters G., Nar H., Messerschmidt A.: J. Am. Chem. Soc.116, 3097–3101 (1994)

    Article  Google Scholar 

  16. Höfer P., Maresh G., Schmalbein D., Holczer K.: Bruker Report142, 15–21 (1996)

    Google Scholar 

  17. Alpert Y., Couder Y., Tuchendler J., Thome H.: Biochem. Biophys. Acta322, 34–37 (1973)

    Google Scholar 

  18. Doctor K., Gaffney B.: Appl. Magn. Reson.11, 425–435 (1996)

    Article  Google Scholar 

  19. Perenboom J., van Hulst K.: Physica B155, 74–77 (1989)

    Article  ADS  Google Scholar 

  20. Lebedev Y. in: Modern Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M., eds), pp. 365–404. New York: John Wiley and Sons 1990.

    Google Scholar 

  21. Goy P., Gross M., Raimond J. in: Proceedings 15th Conference on IR and MM Waves (Temkin R.E., ed.), SPIE Proc.1514, 172–173 (1990)

  22. Goy P., Raimond J., Gross M. in: Proceedings 18th Conference on IR and MM Waves (Siergrist M.R., Tran M.W., Tran T.M., eds.), SPIE Proc.2104, 487–488 (1991)

  23. Lesurf J. (ed.): Millemeter-Wave Optics, Sevices and Systems. London: Adam Hilger 1990.

    Google Scholar 

  24. Wylde R.: IEE Proceedings131-H(4), 258–262 (1984)

    ADS  Google Scholar 

  25. Smith G., Unsworth C, Kang S., Franklin D., Lesurf J.: IEEE Transactions on Microwave Theory and Techniques, Symposium Proceedings (IEEE MTT-S), pp. 1665–1668. Orlando 1995.

  26. Costley A., Hursey K., Neill C., Ward J.: J. Opt. Soc. Am.67, 979–981 (1977)

    Article  ADS  Google Scholar 

  27. Smith G. Lesurf J.: IEEE MTT39, 2229–2236 (1991)

    Article  Google Scholar 

  28. Hamilton C., Scott R., Johnson M.: J. Biol. Chem.264, 11605–11613 (1989)

    Google Scholar 

  29. Griffiths J., Owen J.: Proc. Roy. Soc. London A213, 459–473 (1952)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reijerse, E.J., van Dam, P.J., Klaassen, A.A.K. et al. Concepts in high-frequency EPR — Applications to bio-inorganic systems. Appl. Magn. Reson. 14, 153–167 (1998). https://doi.org/10.1007/BF03161887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161887

Keywords

Navigation