Skip to main content
Log in

Immunoreactivity patterns in neurofibrillary tangles of the inferior temporal cortex in Alzheimer disease

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The distributions of various immunohistochemical markers of neurofibrillary tangles (NFT) were compared to that of a normal nerve cell cytoskeletal marker, SMI32, in the inferior temporal cortex of Alzheimer brains and normal aged controls. NFT markers included antibodies to the microtubule-associated proteins tau, ubiquitin, or amyloid P component (AP). The results showed that, in our group of patients, the decrease of SMI32 immunoreactivity in the Alzheimer temporal cortex is paralleled by an increase in AP immunoreactivity in neurons and neurofibrillary tangles. This suggests that AP may play an important role in NFT formation or evolution in Alzheimer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alzheimer A. (1907) Über eine eigenartige Erkrankung der Hirnrinde.Allg. Z. Psychiat. 64, 146–148.

    Google Scholar 

  • Arriagada P. V., Growdon J. H., Hedley-Whyte E. T., and Hyman B. T. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease.Neurology 42, 631–639.

    PubMed  CAS  Google Scholar 

  • Bancher C., Brunner C., Lassmann H., Budka H., Jellinger K., Wiche B., Seitelberger F., Grundke-Iqbal I., Iqbal K., and Wisniewski H. M. (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease.Brain Res. 477, 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Bancher C., Grundke-Iqbal I., Iqbal K., Fried V. A., Smith H. T., and Wisniewski H. M. (1991) Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease.Brain Res. 539, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Bondareff W., Wischik C. M., Novak M., Amos W. B., Klug A., and Roth M. (1990) Molecular analysis of neurofibrillary degeneration in Alzheimer’s disease. An immunohistological study.Am. J. Pathol. 137, 711–723.

    PubMed  CAS  Google Scholar 

  • Brodmann (1909)Vergleichende Lokalisation lehre der Gross hirnrinde in ihren Prinzipien dargestelt auf Grund des Zellenbaues, J.A. Barth, Leipzig.

    Google Scholar 

  • Duong T. Pommier E. C., and Scheibel A. B. (1989) Immunodetection of the amyloid P component in Alzheimer’s disease.Acta Neuropathol. 78, 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Duong T., Doucette T., Zidenberg N. A., Jacobs R. W., and Scheibel A. B. (1993) Microtubule-associated proteins tau and amyloid P component in Alzheimer’s disease.Brain Res. 603, 74–86.

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom P., Hack C. E., Rozemuller J. M., and Stam F. C. (1989) Complement activation in amyloid plaques in Alzheimer’s dementia.Virchows Arch. B Cell Pathol. 56, 259–262.

    CAS  Google Scholar 

  • Fried V. A. and Smith T. (1989) Ubiquitin: a multifunctional regulating protein associated with the cytoskeleton.Prog. Clin. Biol. Res. 317, 733–744.

    PubMed  CAS  Google Scholar 

  • He Y.. Delaère P., Duyckaerts C., Wasowicz M., Piette F., and Hauw J.J. (1993a) Two distinct ubiquitin immunoreactive senile plaques in Alzheimer’s disease: relationship with the intellectual status in 29 cases.Acta Neuropathol. 86, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • He Y., Duyckaerts C., Delaère P., Piette F., and Hauw J-J. (1993b) Alzheimer’s lesions labeled by anti-ubiquitin antibodies: comparison with other staining techniques. A study of 15 cases with graded intellectual status in aging and Alzheimer’s disease.Neuropathol. Appl. Neurobiol. 19, 364–371.

    Article  PubMed  CAS  Google Scholar 

  • Hof P. R. and Morrison J. H. (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II: Primary and secondary visual cortex.J. Comp. Neurol. 301, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Hof P. R., Cox K., and Morrison J. H. (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex.J. Comp. Neurol. 301, 44–54.

    Article  PubMed  CAS  Google Scholar 

  • Hyman B. T., Van Hoesen G. W., Beyreuther K., and Masters C. L. (1989) A4 amyloid protein immunoreactivity is present in Alzheimer’s neurofibrillary tangles.Neurosci. Lett. 101, 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria R. N. and Grahovac I. (1990) Serum amyloid P component immunoreactivity in hippocampal tangles, plaques and vessels: implications for leakage across the blood-brain barrier in Alzheimer’s disease.Brain Res. 516, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria R. N., Golde T., Cohen M., Younkin L. H., and Younkin S. (1991) Absence of detectable mRNA of serum amyloid P (SAP) in human brain, choroid plexus, and meninges suggests that the presence of SAP in CSF is due to transport across the blood-brain barrier.J. Neuropathol. Exp. Neurol. 50, 339.

    Google Scholar 

  • Kawamata T., Tooyama I., Yamada T., Walker D. G., and McGeer P. L. (1993) Lactotransferrin immunocytochemistry in Alzheimer and normal human brain.Am. J. Pathol. 142, 1574–1585.

    PubMed  CAS  Google Scholar 

  • Kidd M. (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease.Nature 197, 192–193.

    Article  PubMed  CAS  Google Scholar 

  • McGeer P. L., Akiyama H., Itagaki S., and McGeer E. G. (1989) Activation of the classical complement pathway in the brain tissue of Alzheimer patients.Neurosci. Lett. 107, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Mori H., Kondo J., and Ihara Y. (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease.Science 235, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  • Perry G., Cras P., Siedlak S. L., Tabaton M., and Kawai M. (1992) β protein immunoreactivity is found in the majority of neurofibrillary tangles of Alzheimer’s disease.Am. J. Pathol. 140, 283–290.

    PubMed  CAS  Google Scholar 

  • Schmidt M. L., Gur R. E., Gur R. C., and Trojanowski J. Q. (1988) Intraneuronal and extracellular neurofibrillary tangles exhibit mutually exclusive cytoskeletal antigens.Ann. Neurol. 23, 184–189.

    Article  PubMed  CAS  Google Scholar 

  • Shaw G. and Chau V. (1988) Ubiquitin and microtubule-associated protein tau immunoreactivity each define distinct structures with differing distributions and solubility properties in Alzheimer brain.Proc. Natl. Acad. Sci. USA 85, 2854–2858.

    Article  PubMed  CAS  Google Scholar 

  • Siripont J., Tebo J. M., and Mortensen R. F. (1988) Receptor-mediated binding of the acute-phase reactant mouse serum amyloid P-component (SAP) to macrophages.Cell. Immunol. 117, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G., Goedert M., Jakes R., and Klug A. (1990) Topographical relationship between β-amyloid and tau protein epitopes in tangle-bearing cells in Alzheimer’s disease.Proc. Natl. Acad. Sci. 87, 3952–3956.

    Article  PubMed  CAS  Google Scholar 

  • Tabaton M., Perry G., Autilio-Gambetti L., Manetto V., and Gambetti P. (1988) Influence of neuronal location on antigenic properties of neurofibrillary tangles.Ann. Neurol. 23, 604–610.

    Article  PubMed  CAS  Google Scholar 

  • Tabaton M., Cammarata S., Mancardi G., Manetto V., Autilio-Gambetti L., Perry G., and Gambetti P. (1991) Ultrastructural localization of β-amyloid, τ, and ubiquitin epitopes in extracellular neurofibrillary tangles.Proc. Natl. Acad. Sci. USA.88, 2098–2102.

    Article  PubMed  CAS  Google Scholar 

  • Terry R. D. (1963) The fine structure of neurofibrillary tangles in Alzheimer’s disease.J. Neuropathol. Exp. Neurol. 22, 629–642.

    Article  PubMed  CAS  Google Scholar 

  • Terry R. D., Masliah E., Salmon D. P., Butters N., De Teresa R., Hill R., Hansen L. A., and Katzman R. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment.Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  • Vande Weghe J., Cras P., Kawai M., Siedlak S. L., Tabaton M., Greenberg B., and Perry G. (1991) Dystrophic neurites infiltrate neurofibrillary tangles in Alzheimer’s disease.Brain Res. 560, 303–305.

    Article  Google Scholar 

  • Vermersch P., Frigard B., and Delacourte A. (1992) Mapping of neurofibrillary degeneration of Alzheimer’s disease: evaluation of heterogeneity using the quantification of abnormal tau proteins.Acta Neuropathol. 85, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Vickers J. C., Delacourte A., and Morrison J. H. (1992) Progressive transformation of the cytoskeleton associated with normal aging and Alzheimer’s disease.Brain Res. 594, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Wang G. P., Khatoon S., Iqbal K., and Grundke-Iqbal I. (1991) Brain ubiquitin is markedly elevated in Alzheimer disease.Brain Res. 566, 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski H. M., Narang H. K., and Terry R. D. (1976) Neurofibrillary tangles of paired helical filaments.J. Neurol. Sci. 27, 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski T., and Frangione B. (1992) Apolipoprotein E: a pathological chaperone in patients with cerebral and systemic amyloid.Neurosci. Lett. 135, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Yagishita S., Itoh Y., Nan W., and Amano N. (1981) Reappraisal of the fine structure of Alzheimer’s neurofibrillary tangles.Acta Neuropathol. 54, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H., Morimatsu M., Hirai S., and Takahashi K. (1987) Alzheimer’s neurofibrillary tangles are penetrated by astroglial processes and appear eosinophilic in their final stages.Acta Neuropathol 72, 214–217.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H., Nakazato Y., Kawarabayashi T., Ishiguro K., Ihara Y., Morimatsu M., and Hirai S. (1991a) Extracellular neurofibrillary tangles associated with degenerating neurites and neuropil theads in Alzheimer-type dementia.Acta Neuropathol. 81, 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H., Nakazato Y., Shoji M., Okamoto K., Ihara YH., Morimatsu M., and Hirai S. (1991b) Secondary deposition of beta amyloid within extracellular neurofibrillary tangles in Alzheimer-type dementia.Am. J. Pathol. 138, 699–705.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duong, T., Gallagher, K.A. Immunoreactivity patterns in neurofibrillary tangles of the inferior temporal cortex in Alzheimer disease. Molecular and Chemical Neuropathology 22, 105–122 (1994). https://doi.org/10.1007/BF03160099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160099

Index Entries

Navigation