Skip to main content
Log in

High-affinity uptake of GABA and glutamate decarboxylase activity in rat primary somatosensory cortex after sciatic nerve injury

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

We have studied the changes in the GABAergic system in the rat somatosensory cortex 1–14 d after sensory deprivation of the hind-limb representation area. Glutamate decarboxylase (GAD) activity was measured in the individual cortical layers using serial sections cut on a freezing microtome parallel to the cortical surface. Gamma-aminobutyric acid (GABA) high-affinity uptake was studied in cortical homogenates of the hind-limb representation area. There was a ≤13% decrease in GAD activity in layer II–IV in both cortical hemispheres 3 d after sciatic nerve injury. In contrast, we found that high-affinity uptake of GABA is not affected.

The data mirror only small changes in GABAergic transmission, probably as a result of the methods employed. These changes correspond to electrophysiological studies suggesting that peripheral manipulation of the somatosensory system, e.g., nerve transection, is accompanied by changes in GABAergic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Calford M. B. and Tweedale R. (1990) Interhemispheric transfer of plasticity in the cerebral cortex.Science 249, 805–807.

    Article  PubMed  CAS  Google Scholar 

  • Chapin J. K. and Lin C.-S. (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats.J. Comp. Neurol. 229, 199–213.

    Article  PubMed  CAS  Google Scholar 

  • Chmielowska J., Stewart M. G., and Bourne, R. C. (1988) γ-Aminobutyric acid (GABA) immunoreactivity in mouse and rat first somatosensory (SI) cortex: Description and comparison.Brain Res. 439, 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich W. D., Durham, D., Lowry O. H., and Woolsey T. A. (1982) “Increased” sensory stimulation leads to changes in energy-related enzymes in the brain.J. Neurosci. 2, 1608–1613.

    PubMed  CAS  Google Scholar 

  • Dykes R. W. (1987) The anatomy and physiology of the somatic sensory cortical regions.Prog. Neurosci. 10, 33–88.

    Article  Google Scholar 

  • Dykes R. W., Landry P., Metherate R., and Hicks T. P. (1984) Functional role for GABA in primary somatosensory cortex: Shaping receptive fields of cortical neurons.J. Neurophysiol. 52, 1066–1093.

    PubMed  CAS  Google Scholar 

  • Hanisch U.-K., Rothe T., Webster H. H., Härtig W., and Biesold D. (1989) Stereotaxic preparation of circumscribed cortical areas from rat brain for biochemical studies.J. Neurosci. Methods 31, 53–58.

    Article  Google Scholar 

  • Hendry S. H. C. and Jones E. G. (1986) Reduction of immunostained GABAergic neurones in deprived-eye domoiance columns of monkey area 17.Nature 320, 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Hicks T. P. and Dykes R. W. (1983) Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition.Brain Res. 274, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Höhmann C. F., Bear M. F., and Ebner F. F. (1985) Glutamic acid decarboxylase activity decreases in mouse neocortex after lesions of the basal forebrain.Brain Res. 333, 165–168.

    Article  PubMed  Google Scholar 

  • Jacobs K. M. and Donoghue J. P. (1991) Reshaping the cortical motor map by unmasking latent intracortical connections.Science 251, 944–947.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T. and Hicks T. P. (1988) Baclofen and γ-aminobutyric acid differentially suppress the cutaneous responsiveness of primary somatosensory cortical neurones.Brain Res. 443, 360–366.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K. (1974) Chemical nature of synaptic transmission in vertebrates.Physiol. Res. 54, 318–450.

    Google Scholar 

  • Landry P. and Deschenes M. (1981) Intracortical arborization and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat.J. Comp. Neurol. 199, 345–371.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Moskal J. R. and Basu S. (1975) The measurement of glutamate decarboxylase activity in brain tissue by a simple microradiometric method.Anal. Biochem. 65, 449–457.

    Article  PubMed  CAS  Google Scholar 

  • O’Kusky J. R. and McGeer E. G. (1989) Methylmercury-induced movement and postural disorders in developing rat: High-affinity uptake of choline, glutamate and γ-aminobutyric acid in the cerebral cortex and caudate-putamen.J. Neurochem. 53, 999–1006.

    Article  PubMed  Google Scholar 

  • Rothe T., Hanisch U. K., Krohn K., Schliebs R., Härtig W., Webster H. H., and Biesold D. (1990) Changes in choline acetyltransferase activity and high affinity choline uptaker, but not in acetylcholinesterase activity and muscarinic cholinergic receptors in rat somatosensory cortex after sciatic nerve injury.Somatosens. Motor Res. 7, 435–446.

    CAS  Google Scholar 

  • Sinclair J. D. (1988) Multiplet-tests are appropriate in science.Trends Pharmacol. Sci. 9, 12, 13.

    Article  PubMed  CAS  Google Scholar 

  • Snow P. J., Nudo R. J., Rivers W., Jenkins W. M., and Merzenich M. M. (1988) Somatotopically inappropriate projection from thalamocortical neurons to the SI cortex of the cat demonstrated by the use of intracortical microstimulation.Somatosens. Res. 5, 349–372.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen J. (1975) High affinity uptake of GABA in presumed GABAergic nerve endings.Brain Res. 84, 409–427.

    Article  PubMed  CAS  Google Scholar 

  • Wall J. T. (1988) Development and maintenance of somatotopic maps of the skin: A mosaic hypothesis based on peripheral and central contiguities.Brain Behav. Evol. 31, 252–268.

    Article  PubMed  CAS  Google Scholar 

  • Wall J. T. and Cusick C. G. (1984) Cutaneous responsiveness in primary somatosensory (S-I) hindpaw cortex before and after partial hindpaw deafferentation in adult rat.J. Neurosci. 4, 1499–1515.

    PubMed  CAS  Google Scholar 

  • Warren R., Tremblay N., and Dykes R. W. (1989) Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex.J. Comp. Neurol. 288, 583–592.

    Article  PubMed  CAS  Google Scholar 

  • Welker E., Soriano E., and Van der Loos H. (1989a) Plasticity in the barrel cortex of the adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity.Exp. Brain Res. 74, 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Welker E., Soriano, E., Dörfl J., and Van der Loos H. (1989b) Plasticity in the barrel cortex of the adult mouse: Transient increase of GAD-immunoreactivity following sensory stimulation.Exp. Brain Res. 78, 659–664.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dietmar Biesold died in 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krohn, K., Rothe, T. & Biesold, D. High-affinity uptake of GABA and glutamate decarboxylase activity in rat primary somatosensory cortex after sciatic nerve injury. Molecular and Chemical Neuropathology 16, 159–169 (1992). https://doi.org/10.1007/BF03159967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159967

Index Entries

Navigation