Skip to main content
Log in

Regional monoamine and metabolite levels in a feline brain tumor model

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The presence of a brain tumor alters regional cerebral blood flow, oxygen consumption, and glucose utilization in adjacent and remote brain tissue, but its effect on brain neurotransmitter levels is unclear. In the present report, the levels of noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), 3,4-dihydroxyphenyl-acetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-acetic acid (5-HIAA) in tumor tissue and gray and white matter obtained from cats with induced brain tumors were measured.

Glioma cells (9L) were xenotransplanted into the central white matter of the right hemisphere, and 15 d later the brains were frozen in vivo. Samples of tumor, parietal (peritumor), temporal, and frontal gray and white matter were divided for analysis of water content and quantification of amines and their metabolites. The water content of white matter, but not gray matter, adjacent to the tumor was increased. Neurotransmitter amine and metabolite levels were much lower in the tumor than in brain tissue. In gray matter adjacent to the tumor, concentrations of DA and its metabolites HVA and DOPAC were significantly decreased from control, whereas 5-HIAA was increased. The NA, DA, HVA, and DOPAC levels were decreased in temporal gray matter, whereas all amine and metabolite levels were unchanged in frontal gray matter. These results indicate that altered neurotransmitter metabolism is one of the effects of the presence of a brain tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenau L. L., Kindt G. W., and McGauler J. L. (1977) Comparison of glucose metabolism in normal brain and edematous brain surrounding an experimental brain neoplasm.Acta Neurol. Scand. 56, 508, 509.

    Google Scholar 

  • Bayens-Simmonds J., Boisvert D. P. J., Castro M. E., and Johnson E. S. (1988) A feline model for experimental studies of peritumor brain edema.J. Neurooncol. 6, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Bentue-Ferrer D., Reymann J. M., Van Een Driessche J., Allain H., and Bagot H. (1985) Effect of triethyltin chloride on the central aminergic neurotransmitters and their metabolites: Relationship with pathophysiology of aging.Exp. Aging Res. 1, 137–141.

    Google Scholar 

  • Chang C. C., Shinonaga M., and Kuwabara T. (1988) Effect of dexamethasone on neurotransmitter amines in a rat glioma model,Advances in Neurology (Long D. M., ed.), Raven, New York (in press).

    Google Scholar 

  • Daly J., Levitt M., Guroff G., and Udenfriend S. (1968) Isotope studies on the mechanism of adrenal tyrosine hydroxylase.Arch. Biochem. Biophys. 126, 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Davis J. N. and Carlsson A. (1973) The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain.J. Neurochem. 21, 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Davis J. N., Carlsson A., MacMillan V., and Siesjo B. K. (1973) Brain tryptophan hydroxylation: dependence on arterial oxygen tension.Science 182, 72–74.

    Article  PubMed  CAS  Google Scholar 

  • DiChiro G., Delapaz R. L., Brooks R. A., Sokoloff L., Kornblith P. L., Smith B. H., Patronas N. J., Kufta C. V., Kessler R. M., Johnston G. S., Manning R. G., and Wolf A. P. (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography.Neurology 32, 1323–1329.

    CAS  Google Scholar 

  • Henn F. A. and Hamberger A. (1971) Glial cell function: uptake of transmitter substances.Proc. Natl. Acad. Sci. USA 68, 2868–2690.

    Article  Google Scholar 

  • Hossmann K. A., Niebuhr I., and Tamura M. (1982) Local cerebral blood flow and glucose consumption of rats with experimental gliomas.J. Cereb. Blood Flow Metab. 2, 25–32.

    PubMed  CAS  Google Scholar 

  • Hossmann K. A., Mies G., Paschen W., Szabo L., Dolan E., and Wechsler W. (1986) Regional metabolism of experimental brain tumors.Acta Neuropathol. (Berlin)69, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y., Matsuura H., and Nakazawa S. (1984) Tissue concentration of biogenic amines in experimental brain tumors.J. Nippon Med. Sch. 51, 124, 125.

    Google Scholar 

  • Ikeda Y. and Nakazawa S. (1985) The role of biogenic amines in the production of peritumor edema.J. Nippon Med. Sch. 52, 117, 118.

    Google Scholar 

  • Ito M., Lammertsma A. A., Wise R. J. S., Bernardi S., Frackowiak R. S. J., Heather J. D., McKenzie C. G., Thomas D. G. T., and Jones T. (1982) Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using15O and positron emission tomography: Analytical techniques and preliminary results.Neuroradiology 23, 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Kim C., Campanelli C., and Khanna J. M. (1983) Determination of picogram levels of brain catecholamines by a simplified liquid chromatographic electrochemical detection method.J. Chromat. 282, 151–159.

    Article  CAS  Google Scholar 

  • Matsumoto M., Kimura K., Fumisawa A., Matsuyama T., Fukunaga R., Yoneda S., Wada H., and Abe H. (1984) Differential effect of cerebral ischemia on monoamine content of discrete brain regions of the mongolian gerbil.J. Neurochem. 42, 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S., Arakaki Y., Numaguchi K., and Ueno S. (1978) The effect of dexamethasone on electroencephalograms in patients with brain tumors.J. Neurosurg. 48, 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell R. E., Long D. M., and French L. A. (1971) The effects of glucosteroids on experimental cold-induced brain edema.J. Neurosurg. 34, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Mrsulja B. B., Mrsulja B. J., Spatz M., Ito U., Walker J. T., and Klatzo I. (1976) Experimental cerebral ischemia in mongolian gerbils. IV. Behaviour of biogenic amines.Acta Neuropathol. (Berlin)36, 1–8.

    Article  CAS  Google Scholar 

  • Pappius H. M. (1981) Local cerebral glucose utilization in thermally traumatized rat brain.Ann. Neurol. 9, 484–491.

    Article  PubMed  CAS  Google Scholar 

  • Pappius H. M. (1982) Dexamethasone and local cerebral glucose utilization in freeze-traumatized rat brain.Ann. Neurol. 12, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Pappius H. M. and Dadoun R. (1986) Biogenic amines in injured brain.Trans. Am. Soc. Neurochem.,17, 298 (abstract).

    Google Scholar 

  • Pappius H. M. and Dadoun R. (1987) Effects of injury on the indoleamines in cerebral cortex.J. Neurochem. 49, 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Reulen H. J., Medzihradsky F., Ensenbach R., Marguth F., and Brendal W. (1969) Electrolytes, fluids and energy metabolism in human cerebral edema,Arch. Neurol. 21, 517–525.

    PubMed  CAS  Google Scholar 

  • Schmiedek P., Baethmann A., Sippel G., Oettinger W., Enzenbach R., Marguth F., and Brendel W. (1974) Energy state and glycolysis in human cerebral edema.J. Neurosurg. 40, 351–364.

    Article  Google Scholar 

  • Shinohara M., Blasberg B., and Patlak C. (1979) Metastatic brain tumors: Local cerebral glucose utilization.Neurology 29, 545.

    Google Scholar 

  • Taki W., Handa H., Ishikawa M., Kobayashi A., Yamashita J., Yonekawa Y., Tanada S., Senda M., Yonekura Y., Torizuka K., Fujita R., Fukuyama H., Harada K., Fujimoto N., and Kameyama M. (1985) Local blood flow and oxygen metabolism in glioma and its surrounding brain,Brain Edema (Inaba Y., Klatzo I., and Spatz M., eds.), pp. 267–272, Springer-Verlag, Berlin.

    Google Scholar 

  • Tsubokawa T., Tsukiyama T., Ohta H., and Kumakawa H. (1985) Regional Metabolism and circulation at peritumoral edema caused by meningioma and malignant glioma,Brain Edema (Inaba Y., Klatzo I., and Spatz M., eds.), pp. 194–199, Springer-Verlag, Berlin.

    Google Scholar 

  • Von Metzlar A. and Nitsch C. (1985) Monoamine content in rat brain during carcinogenesis and the influence of the CNS drugs piracetam and imipramine.Naturwissenschaften 72, 542, 543.

    Google Scholar 

  • Welsh F. A. and Rieder W. (1978) Evaluation of in situ freezing of cat brain by NADH fluorescence.J. Neurochem. 31, 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Yang M. S., Lutz H., DeWitt D. S., Becker D. P., and Hayes R. L. (1983) An improved method for in situ freezing of brain for metabolic studies.J. Neurochem. 41, 1393–1397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayens-Simmonds, J., Boisvert, D.P.J. & Baker, G.B. Regional monoamine and metabolite levels in a feline brain tumor model. Molecular and Chemical Neuropathology 10, 63–75 (1989). https://doi.org/10.1007/BF03159714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159714

Index Entries

Navigation