Skip to main content
Log in

18F-FDG-PET glucose hypometabolism pattern in patients with epileptogenic hypothalamic hamartoma

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Epileptogenic hypothalamic hamartoma is characterized by intractable gelastic seizures. A systematic analysis of the overall brain metabolic pattern in patients with hypothalamic hamartoma (HH) could facilitate the understanding of the epileptic brain network and the associated brain damage effects of HH. In this study, we retrospectively evaluated 27 patients with epileptogenic HH (8 female patients; age, 2–33 years) by using 18F-fluorodeoxyglucose-positron emission tomography. The correlations among tomography result, seizure type, sex, and structural magnetic resonance imaging were assessed. Whole metabolic patterns and voxel-based morphometry findings were assessed by group analysis with healthy controls. Assessment of the whole metabolic pattern in patients with HH revealed several regional metabolic reductions in the cerebrum and an overall metabolic reduction in the cerebellum. In addition, areas showing hypometabolism in the neocortex were more widely distributed ipsilaterally than contralaterally to the HH. Reductions in glucose metabolism and gray matter volume in the neocortex were predominant ipsilateral to the HH. In conclusion, the glucose hypometabolism pattern in patients with epileptogenic HH involved the neocortex, subcortical regions, and cerebellum. The characteristics of glucose hypometabolism differed across seizure type and sex. Reductions in glucose metabolism and structural changes may be based on different mechanisms, but both are likely to occur ipsilateral to the HH in the neocortex. We hypothesized that the dentato-rubro-thalamic tract and cerebro-ponto-cerebellar tract, which are responsible for intercommunication between the cerebral cortex, subcortical regions, and cerebellar regions, may be involved in a pathway related to seizure propagation, particularly gelastic seizures, in patients with HH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner K, Schulze-Bonhage A, Urbach H, Trippel M, Spehl TS, Buschmann F, Metternich B, Ofer I, Meyer PT, Frings L. Reduced glucose metabolism in neocortical network nodes remote from hypothalamic hamartomas reflects cognitive impairment. Epilepsia 2017; 58(Suppl 2): 41–19

    Article  CAS  Google Scholar 

  2. Breningstall GN. Gelastic seizures, precocious puberty, and hypothalamic hamartoma. Neurology 1985; 35(8): 1180–1183

    Article  CAS  Google Scholar 

  3. Wang D, Shan Y, Bartolomei F, Kahane P, An Y, Li M, Zhang H, Fan X, Ou S, Yang Y, Wei P, Lu C, Wang Y, Du J, Ren L, Wang Y, Zhao G. Electrophysiological properties and seizure networks in hypothalamic hamartoma. Ann Clin Transl Neurol 2020; 7(5): 653–666

    Article  Google Scholar 

  4. Kahane P, Ryvlin P, Hoffmann D, Minotti L, Benabid AL. From hypothalamic hamartoma to cortex: what can be learnt from depth recordings and stimulation? Epileptic Disord 2003; 5(4): 205–217

    PubMed  Google Scholar 

  5. Wu J, Xu L, Kim DY, Rho JM, St John PA, Lue LF, Coons S, Ellsworth K, Nowak L, Johnson E, Rekate H, Kerrigan JF. Electrophysiological properties of human hypothalamic hamartomas. Ann Neurol 2005; 58(3): 371–382

    Article  Google Scholar 

  6. Mueller SG, Laxer KD, Cashdollar N, Buckley S, Paul C, Weiner MW. Voxel-based optimized morphometry (VBM) of gray and white matter in temporal lobe epilepsy (TLE) with and without mesial temporal sclerosis. Epilepsia 2006; 47(5): 900–907

    Article  Google Scholar 

  7. Barron DS, Fox PM, Laird AR, Robinson JL, Fox PT. Thalamic medial dorsal nucleus atrophy in medial temporal lobe epilepsy: a VBM meta-analysis. Neuroimage Clin 2013; 2: 25–32

    Article  Google Scholar 

  8. Labate A, Cerasa A, Gambardella A, Aguglia U, Quattrone A. Hippocampal and thalamic atrophy in mild temporal lobe epilepsy: a VBM study. Neurology 2008; 71(14): 1094–1101

    Article  CAS  Google Scholar 

  9. Ponisio MR, Zempel JM, Day BK, Eisenman LN, Miller-Thomas MM, Smyth MD, Hogan RE. The role of SPECT and PET in epilepsy. AJR Am J Roentgenol 2021; 216(3): 759–768

    Article  Google Scholar 

  10. Shang K, Wang J, Fan X, Cui B, Ma J, Yang H, Zhou Y, Zhao G, Lu J. Clinical value of hybrid TOF-PET/MR imaging-based multi-parametric imaging in localizing seizure focus in patients with MRI-negative temporal lobe epilepsy. AJNR Am J Neuroradiol 2018; 39(10): 1791–1798

    Article  CAS  Google Scholar 

  11. Vickery S, Hopkins WD, Sherwood CC, Schapiro SJ, Latzman RD, Caspers S, Gaser C, Eickhoff SB, Dahnke R, Hoffstaedter F. Chimpanzee brain morphometry utilizing standardized MRI preprocessing and macroanatomical annotations. eLife 2020; 9: e60136

    Article  CAS  Google Scholar 

  12. Lamarche F, Job AS, Deman P, Bhattacharjee M, Hoffmann D, Gallazzini-Crépin C, Bouvard S, Minotti L, Kahane P, David O. Correlation of FDG-PET hypometabolism and SEEG epileptogenicity mapping in patients with drug-resistant focal epilepsy. Epilepsia 2016; 57(12): 2045–2055

    Article  CAS  Google Scholar 

  13. Lagarde S, Boucekine M, McGonigal A, Carron R, Scavarda D, Trebuchon A, Milh M, Boyer L, Bartolomei F, Guedj E. Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. 2020; 47: 3130–3142

  14. Wei PH, An Y, Fan XT, Wang YH, Yang YF, Ren LK, Shan YZ, Zhao GG. Stereoelectroencephalography-guided radiofrequency thermocoagulation for hypothalamic hamartomas: preliminary evidence. World Neurosurg 2018; 114: e1073–e1078

    Article  Google Scholar 

  15. Fenoglio KA, Wu J, Kim DY, Simeone TA, Coons SW, Rekate H, Rho JM, Kerrigan JF. Hypothalamic hamartoma: basic mechanisms of intrinsic epileptogenesis. Semin Pediatr Neurol 2007; 14(2): 51–59

    Article  Google Scholar 

  16. Wang D, Shan Y, Bartolomei F, Kahane P, An Y, Li M, Zhang H, Fan X, Ou S, Yang Y, Wei P, Lu C, Wang Y, Du J, Ren L, Wang Y, Zhao G. Electrophysiological properties and seizure networks in hypothalamic hamartoma. Ann Clin Transl Neurol 2020; 7(5): 653–666

    Article  Google Scholar 

  17. Ryvlin P, Ravier C, Bouvard S, Mauguire F, Le Bars D, Arzimanoglou A, Petit J, Kahane P. Positron emission tomography in epileptogenic hypothalamic hamartomas. Epileptic Disord 2003; 5(4): 219–227

    PubMed  Google Scholar 

  18. Yang YF, Wei PH, Meng F, An Y, Fan XT, Wang YH, Wang D, Ren LK, Shan YZ, Zhao GG. Glucose metabolism characteristics of extra-hypothalamic cortex in patients with hypothalamic hamartomas (HH) undergoing epilepsy evaluation: a retrospective study of 16 cases. Front Neurol 2021; 11: 587622

    Article  Google Scholar 

  19. McCormick C, Protzner AB, Barnett AJ, Cohn M, Valiante TA, McAndrews MP. Linking DMN connectivity to episodic memory capacity: what can we learn from patients with medial temporal lobe damage? Neuroimage Clin 2014; 5: 188–196

    Article  Google Scholar 

  20. Hu CY, Gao X, Long L, Long X, Liu C, Chen Y, Xie Y, Liu C, Xiao B, Hu ZY. Altered DMN functional connectivity and regional homogeneity in partial epilepsy patients: a seventy cases study. Oncotarget 2017; 8(46): 81475–81484

    Article  Google Scholar 

  21. Mohan A, Roberto AJ, Mohan A, Lorenzo A, Jones K, Carney MJ, Liogier-Weyback L, Hwang S, Lapidus KAB. The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: a review. Yale J Biol Med 2016; 89(1): 49–57

    PubMed  PubMed Central  Google Scholar 

  22. Wang KL, Hu W, Liu TH, Zhao XB, Han CL, Xia XT, Zhang JG, Wang F, Meng FG. Metabolic covariance networks combining graph theory measuring aberrant topological patterns in mesial temporal lobe epilepsy. CNS Neurosci Ther 2019; 25(3): 396–408

    Article  Google Scholar 

  23. Chassoux F, Artiges E, Semah F, Desarnaud S, Laurent A, Landré E, Gervais P, Devaux B, Helal OB. Determinants of brain metabolism changes in mesial temporal lobe epilepsy. Epilepsia 2016; 57(6): 907–919

    Article  Google Scholar 

  24. Iannetti P, Spalice A, Raucci U, Atzei G, Cipriani C. Gelastic epilepsy: video-EEG, MRI and SPECT characteristics. Brain Dev 1997; 19(6): 418–421

    Article  CAS  Google Scholar 

  25. Usami K, Matsumoto R, Sawamoto N, Murakami H, Inouchi M, Fumuro T, Shimotake A, Kato T, Mima T, Shirozu H, Masuda H, Fukuyama H, Takahashi R, Kameyama S, Ikeda A. Epileptic network of hypothalamic hamartoma: an EEG-fMRI study. Epilepsy Res 2016; 125: 1–9

    Article  Google Scholar 

  26. Parvizi J, Anderson SW, Martin CO, Damasio H, Damasio AR. Pathological laughter and crying: a link to the cerebellum. Brain 2001; 124(9): 1708–1719

    Article  CAS  Google Scholar 

  27. Elyas AE, Bulters DO, Sparrow OC. Pathological laughter and crying in patients with pontine lesions. J Neurosurg Pediatr 2011; 8(6): 544–547

    Article  Google Scholar 

  28. Zhang L, Cao B, Wei QQ, Ou R, Zhao B, Yang J, Wu Y, Shang H. Pathological laughter and crying in multiple system atrophy with different subtypes: frequency and related factors. J Affect Disord 2021; 283: 60–65

    Article  Google Scholar 

  29. Striano S, Striano P. Clinical features and evolution of the gelastic seizures-hypothalamic hamartoma syndrome. Epilepsia 2017; 58(Suppl 2): 12–15

    Article  Google Scholar 

  30. Savic I, Engel J Jr. Structural and functional correlates of epileptogenesis—does gender matter? Neurobiol Dis 2014; 70: 69–73

    Article  Google Scholar 

  31. Chételat G, Landeau B, Eustache F, Mézenge F, Viader F, de la Sayette V, Desgranges B, Baron JC. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 2005; 27(4): 934–946

    Article  Google Scholar 

  32. Losey TE, Beeman SC, Ng YT, Kerrigan JF, Baxter LC. White matter density is increased in patients with hypothalamic hamartoma and multiple seizure types. Epilepsy Res 2011; 93(2–3): 212–215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81801288, 81871009, and 82030037)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzhi Shan, Penghu Wei or Guoguang Zhao.

Additional information

Compliance with ethics guidelines

Chao Lu, Kailiang Wang, Fei Meng, Yihe Wang, Yongzhi Shan, Penghu Wei, and Guoguang Zhao declare that they have no conflicts of interest. All procedures were conducted in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Wang, K., Meng, F. et al. 18F-FDG-PET glucose hypometabolism pattern in patients with epileptogenic hypothalamic hamartoma. Front. Med. 15, 913–921 (2021). https://doi.org/10.1007/s11684-021-0874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0874-1

Keywords

Navigation