Skip to main content
Log in

Investigations concerning light sources for spectrum analysis II

Исследования в области световых источников для спектрального анализа. II. Дуговой возбудитель постоянного тока, с питанием от переменного тока и имеющего электронное управление

Electronically controlled a. c. operated d. c. interrupted ARC source

  • Published:
Acta Physica Academiae Scientiarum Hungaricae

Abstract

The article describes an electronically controlled a. c. operated d. c. interrupted are source for spectrographic analysis. The interrupted are source of otherwise conventional circuit can be ignited in a variable rhythm, i. e. the number of arcs per unit of time can be varied. The high voltage and high frequency ignition is done by means of a thyratron circuit with a Tesla transformer being inserted. The rhythm of the ignition can be adjusted by properly controlling the thyratron grid. The grid is controlled by voltage pulses coming from a pulse generator.

Резюме

В статье описывается служащий для спектрального анализа дуговой возбудитель постоянного тока с электронным управлением и с питанием от сети переменного тока: Прерывистый дуговой возбудитель, имеющий обычную схему, может зажигаться с переменным темпом, т. е. число дуг в единицу времени может быть изменено. Зажигание высокого напряжения и высокой частоты происходит при помощи тиратрона с использованием трансформатора Тесла. Темп зажигания устанавливается управлением сетки тиратрона. Сетка управляется импульсами тока, получаемыми от мультивибратора.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Á. Bardócz, Interrupted Arc for Spectrum Analysis, Acta Physica Hungarica1, 247, 1952.

    Article  Google Scholar 

  2. Á. Bardócz, Interrupted are source for spectrographic analysis (in Hungarian), Elektrotechnika44, 174, 1951.

    Google Scholar 

  3. K. Pfeilsticker, Der Abreissbogen mit Hochfrequenzzündung, Zs. Elektrochem.43, 719, 1937.

    Google Scholar 

  4. N. S. Sventitsky, Interrupted Arc for Spectral Analysis, Zavodskaya Lab.6, 325, 1937.

    Google Scholar 

  5. N. S. Sventitsky, Quantitative Spectrographic Analysis of Brass and Bronze, Zavodskaya Lab.7, 1371, 1938.

    Google Scholar 

  6. N. S. Sventitsky, Stabilization of A. C. Arc Used for Quantitative Spectrographic Analysis, Zavodskaya Lab.8, 470, 1940.

    Google Scholar 

  7. N. S. Sventitsky, A. C. Arc as a Light Source for Quantitative Spectrographic Analysis, Bull. Aced. Sci. USSR. Sér. Phys.5, 222, 1941.

    Google Scholar 

  8. N. S. Sventitsky, Present-day Sources of Light for Spectrographic Analysis, Bull. Acad. Sci. USSR. Sér. Phys.9, 677, 1945.

    Google Scholar 

  9. N. S. Sventitsky, The Steeloscope and its Applications (in Russian), Госугарственное издательство технико — теоретической литературы, Москва, Ленинград. 1948.

    Google Scholar 

  10. J. Calker, Über einige Erfahrungen bei spektralanalytischen Untersuchungen mit einem Abreissbogen begrenzter Bogenlänge, Zs. anorg. allg. Chemie234, 179, 1937.

    Article  Google Scholar 

  11. W. Gerlach undW. Rollwagen, fortschritte in der spektralanalytischen Methodik, Metallwirtschaft16, 1083, 1937.

    Google Scholar 

  12. H. Hemmendinger, Time Effects and Arc Intensities, J. Opt. Soc. Am.32, 149, 1942.

    Article  ADS  Google Scholar 

  13. J. L. Saunderson andV. J. Caldecourt, Accessory Equipment for Spectrochemical Analysis, J. Opt. Soc. Am.34, 116, 1944.

    Article  ADS  Google Scholar 

  14. J. Mika, F. Macher andB. Vorsatz, Der Niederspannungsfunken als Lichtquelle der quantitativen Spektralanalyse, Anal. Chim. Acta3, 228, 1949.

    Article  Google Scholar 

  15. T. Török, Spectrographic Analysis of Minor Constituents in Aluminium and its Alloys (in Hungarian), Magyar Kémiai Folyóirat,57, 196, 1951.

    Google Scholar 

  16. R. Schmidt, A normalized D. C. Interrupted Arc for Spectrochemical Analysis, Rec. Trav. Chim. Pays-Bas60, 378, 1941.

    Google Scholar 

  17. M. F. Hasler andH. W. Dietert, A New Spectroscopic Source Unit, J. Opt. Soc. Am.33, 218, 1943.

    Article  ADS  Google Scholar 

  18. R. Schmidt andA. Schuringa, An Interrupted Direct Current Arc for Spectrochemical Analysis, Rec. Trav. Chim. Pays-Bas64, 349, 1945.

    Google Scholar 

  19. V. J. Caldecourt andJ. L. Saunderson, A Combination Arc-Spark Source for Magnesium Analysis, J. Opt. Soc. Am.36, 99, 1946.

    Article  ADS  Google Scholar 

  20. The Dow Chemical Co., Magnesium Laboratory Methods, Spectrographic Analysis, 1946.

  21. D. A. Sinclair, A Condensed Arc Source Unit for Spectrochemical Analysis, J. Opt. Soc. Am.38, 547, 1948.

    Article  ADS  Google Scholar 

  22. W. Marti, Ein Generator für rechteckförmige, bogenähnliche Stromimpulse, Spectrochim. Acta4, 43, 1950.

    Article  ADS  Google Scholar 

  23. Á. Bardócz, The Lighting Atoms and their Practical Uses (in Hungarian), Elektrotechnika33, 141 and 149, 1940;34, 129, 1941.

    Google Scholar 

  24. Carl Zeiss, Jena, Funkenerzeuger nach Feussner, Abreissbogengerät nach Pfelsticker, Mess. 264 B.

  25. Carl Zeiss, Jena, Bedienungsanweisung für Funkenerzeuger nach Feussner Modell II, Abreissbogengerät nach Pfeilsticker Mess. 277/II.

  26. Carl Zeiss, Jena, Funkenerzeuger nach Feussner, Abreissbogengerät nach Pfeilsticker, Mess 41–425.

  27. Carl Zeiss—H. Kaiser, Anordnung zur funkenerzeugung für die Spektralanalyse, German patent No. 735 033, 1943.

  28. J. H. Enns andR. A. Wolfe, An Air Interrupter Type Spectrographic Light Source, J. Opt. Soc. Am.39, 298, 1949.

    Article  ADS  Google Scholar 

  29. A. Walsh, A General-Purpose Source Unit for the Spectrographic Analysis of Metals and Alloys, Bull. Brit. Non-Ferrous Met. Res. Assoc. No201, 60, 1946; Metal Industry68, 243, 264, 293, 1946.

    Google Scholar 

  30. A. Walsh, Spectrographic Analysis of Uranium, Spectrochim. Acta4, 47, 1950.

    Article  ADS  Google Scholar 

  31. O. Findeisen, Abreissbogen nach Pfeilsticker, Zs. Metallkunde30, 213, 1938.

    Google Scholar 

  32. C. Braudo andH. R. Clayton, An Improved Spectrographic Source, J. Soc. Chem Ind.66, 259, 1947.

    Article  Google Scholar 

  33. C. Braudo, J. D. Craggs andG. C. Williams, On the Excitation Temperature in a Spectroscopic Spark Source, Spectrochim. Acta3, 546, 1949.

    Article  ADS  Google Scholar 

  34. The British Aluminium Co. Ltd., Analysis of Aluminium and its Alloys, 1949.

  35. R. J. Dwyer, A Variable Frequency Electronic Interrupter for Direct Current Arc, J. Opt. Soc. Am.40, 180, 1950.

    Article  Google Scholar 

  36. F. Kemmler, Anordnung zum Erzeugen elektrischer Bogenentladungen regelbarer Frequenz und Intensität für spektralanalytische Zwecke, German Patent No. 712 654, 1941.

  37. Z. Nähring, Neuerungen auf dem Gebiet der Spektroanalyse, Messtechnik18, 113, 1943.

    Google Scholar 

  38. W. Meyer-Eppler andW. Koehler, Versuche an einem mit pulsierendem Gleichstrom betriebenen Abreissbogen, Arch. Elektrotechnik35, 603, 1941.

    Article  Google Scholar 

  39. W. C. Heraeus—K. Pfeilsticker, Method and Apparatus for Spectrum Excitation, U. S. patent, No 2,212,950, 1938.

  40. Carl Zeiss—H. Kaiser, Einrichtung zur Erzeugung eines Abreissbogens zur Spektralanalyse, German patent No. 699 052, 1940.

  41. W. C. Heraeus—K. Pfeilsticker, Verfahren zum Anregen von Spektren, German patent No. 709 179, 1941.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper forms part II of a series of articles, part I see reference [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardócz, Á. Investigations concerning light sources for spectrum analysis II. Acta Physica 2, 265–276 (1952). https://doi.org/10.1007/BF03156645

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03156645

Keywords

Navigation