Skip to main content
Log in

Genetic transformation of plants

  • Published:
Proceedings / Indian Academy of Sciences

Abstract

Current status of the molecular approaches for integrative genetic transformation of plants is reviewed.Agrobacterium-mediated and direct DNA transformation of protoplasts are considered. Elucidation of the molecular events in natural genetic transformation of plant cells in crown gall disease caused byAgrobacterium tumefaciens, has led to the development of T-DNA based vectors for introducing exogenous DNA into plant cells. Various strategies used for this are discussed. So far,Agrobacterium-mediated transformation has been most successful and widely used in dicotyledonous plants. Direct DNA transformation involves either DNA uptake by protoplasts or its mechanical delivery into the cell nucleus. Transformation of both monocotyledonous and dicotyledonous plant cells has been shown by this method. The genes transferred into plants from bacteria, other plant and animal species and various promoters used in chimeric gene constructs for the expression of such genes are listed. Organ specific expression and Mendelian inheritance of transferred genes have been demonstrated. Prospects of the transformation technique for the improvement of crop plants are examined. Gene transfers reported so far indicate that the immediate benefits will be in the development of cultivars carrying herbicide resistance or biocide gene(s). Identification, isolation and cloning of DNA sequences governing resistance to plant diseases or pests, and their introduction into improved cultivars could become possible in the future. Isolation, in vitro modification and re-introduction of the modified gene(s) back into the plant genome is yet another possibility for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts M, Jacobs M, Hernalsteens J P, Van Montagu M and Schell J 1979 Induction andin vitro culture ofArabidopsis thaliana crown gall tumors;Plant Sci. Lett. 17 43–50

    CAS  Google Scholar 

  • Akiyoshi D E, Klee H, Amasino R M, Nester E W and Gordon M P 1984 T-DNA ofAgrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis;Proc. Natl. Acad. Sci. USA 81 5994–5998

    PubMed  CAS  Google Scholar 

  • An G, Watson B D, Stachel S, Gordon M P and Nester E W 1985 New cloning vehicles for transformation of higher plants;EMBO J. 4 277–284

    PubMed  CAS  Google Scholar 

  • Avery O T, MacLeod C M and McCarty M J 1944 Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III;J. Exp. Med. 79 137–157

    CAS  Google Scholar 

  • Back E W and Chilton M D 1985 The influence of T-DNA border variations on plant transformation efficiency; inAbstracts of the first international congress on plant molecular biology (ed) G A Galau, (Athens, Georgia: University of Georgia) p 114

    Google Scholar 

  • Beachy R N, Chen Z L, Horsch R B, Rogers S G, Hoffman N J and Fraley R T 1985 Accumulation and assembly of soybean β-conglycinin in seeds of transformedPetunia plants;EMBO J. 4 3047–3055

    PubMed  CAS  Google Scholar 

  • Bevan M W and Chilton M D 1982 T-DNA of theAgrobacterium Ti and Ri plasmids;Ann. Rev. Genet. 16 357–384

    PubMed  CAS  Google Scholar 

  • Bevan M W, Mason S E and Goelet P 1985 Expression of TMV coat protein by CaMV promoter in plants transformed byAgrobacterium;EMBO J. 4 1921–1926

    PubMed  CAS  Google Scholar 

  • Bhatia C R and Rabson R 1976 Bioenergetic considerations in cereal breeding for protein improvement;Science 194 1418–1421

    PubMed  CAS  Google Scholar 

  • Bhatia C R, Mitra R and Mathews Helena 1985 Vectors for plant genetic engineering; inGenetic manipulation for crop improvement (ed) V L Chopra (New Delhi: Oxford-IBH) pp 261–289

    Google Scholar 

  • Braun A C 1947 Thermal studies on the factors responsible for tumor initiation in crown gall;Am. J. Bot. 34 234–240

    Google Scholar 

  • Braun A C 1956 The activation of two growth substance systems accompanying the conversion of normal tumor cell in crown gall;Cancer Res. 16 53–56

    PubMed  CAS  Google Scholar 

  • Burr B and Burr F A 1981 Controlling element events at the shrunken locus in maize;Genetics 98 143–156

    PubMed  CAS  Google Scholar 

  • Burr B and Burr F A 1982Ds controlling elements of maize at the shrunken locus are large and dissimilar insertions;Cell 29 977–86

    PubMed  CAS  Google Scholar 

  • Burrell M M, Twell D, Karp A and Oom G 1985 Expression of shoot inducing Ti TL-DNA in differentiated tissues of potato (Solanum tuberosum cv Maris Bard);Plant Mol. Biol. 5 213–222

    CAS  Google Scholar 

  • Bussman K, Hombrecher G, Meyer P, Walgenbach E and Saedler H 1985 Direct transfer of unique, middle and highly repetitive sequence to plants; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 109

    Google Scholar 

  • Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Schell J and Zambryski P 1983 Introduction of genetic material into plant cells;Science 222 815–821

    PubMed  CAS  Google Scholar 

  • Chilton M D, Drummond M H, Merlo D J, Sciaky D, Montoya A L, Gordon M P and Nester E W 1977 Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis;Cell 11 263–271

    PubMed  CAS  Google Scholar 

  • Chilton M D 1980Agrobacterium Ti plasmids as a tool for genetic engineering in plants; inGenetic engineering of osmoregulation (eds) D W Rains, R C Valentine and A Hollaender (New York: Plenum Publishing Corp.) p 23–31

    Google Scholar 

  • Chilton M D, Saiki R K, Yadav N, Gordon M P and Quetier F 1980 T-DNA fromAgrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumour cells;Proc. Natl. Acad. Sci. USA 77 4060–4064

    PubMed  CAS  Google Scholar 

  • Chilton M D 1982 Integration and transcription of Ti plasmid fragments; inMolecular Biology of Plant Tumors (eds) G Kahl and J Schell (New York: Academic Press) pp 299–319

    Google Scholar 

  • Chilton M D 1983 A vector for introducing new genes into plants;Sci. Am. 248 36–45

    Google Scholar 

  • Comai L, Schilling-Cordard C, Mergia A and Houck C M 1983 A new technique for genetic engineering ofAgrobacterium Ti plasmid;Plasmid 10 21–30

    PubMed  CAS  Google Scholar 

  • Comai L and Stalker D 1984 Impact of genetic engineering on crop protection;Crop Prot. 3 399–408

    CAS  Google Scholar 

  • Comai L, Facciotti D, Hiatt W R, Thompson G, Rose R E and Stalker D M 1985 Expression in plants of a mutantaro A gene fromSalmonella typhimurium confers tolerance to glyphosate;Nature (London) 317 741–744

    CAS  Google Scholar 

  • Corces V, Pellicer A, Axel R and Meselson M 1981 Integration, transcription and control of aDrosophila heat shock gene in mouse cells;Proc. Natl. Acad. Sci. USA 78 7038–7042

    PubMed  CAS  Google Scholar 

  • Courage-Tebbe U, Doring H P, Fedoroff N and Starlinger P 1983 The controlling elementDs at the shrunken locus inZea mays. Structure of the unstable sh-m5933 allele and several revertants;Cell 34 383–393

    PubMed  CAS  Google Scholar 

  • Crossway A, Houck C M and Facciotti D 1986 Potential of micro-manipulation techniques for plant improvement; inNuclear techniques and in vitro culture for plant improvement, (Vienna: IAEA) pp 471–479

    Google Scholar 

  • Croy R R D, Lycett G W, Gatehouse J A, Yarwood J M and Boulter D 1982 Cloning and analysis of c-DNAs encoding plant storage protein precursors;Nature (London) 295 76–78

    CAS  Google Scholar 

  • Czernilofsky A P, Hain R, Herrera-Estrella L, Lorz H, Baker B J and Schell J 1985 Fate of selectable marker DNA integrated in the genome ofNicotiana tabacum; inAbstracts of first international congress on plant molecular biology (ed.) G A Galau (Athens, Georgia: University of Georgia) p 110

    Google Scholar 

  • Day P R 1984 Molecular approaches to plant breeding; inGenetics: New Frontiers (New Delhi: Oxford-IBH) Vol. 4, p 85–94

    Google Scholar 

  • De Block M, Schell J and Van Montagu M 1985 Chloroplast transformation byAgrobacterium tumefaciens;EMBO J. 4 1367–1372

    PubMed  Google Scholar 

  • De Cleene M and De Ley J 1976 The host range of crown gall;Bot. Rev. 42 389–466

    Google Scholar 

  • De Cleene M and De Ley M 1981 The host range of infectious hairy-root;Bot. Rev. 47 147–194

    Google Scholar 

  • De Framond A J, Barton K A and Chilton M D 1983 Mini-Ti: A new vector strategy for plant genetic engineering;Bio/Technology 1 262–269

    Google Scholar 

  • De Framond A J, Back E W, Chilton W S, Kayes L and Chilton M D 1986 Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation;Mol. Gen. Genet. 202 125–132

    Google Scholar 

  • De Laat A M M and Blaas J 1985 Potential applications for micro injection of plant protoplasts; inAbstracts of first international congress on plant molecular biology (ed) G A Galau, (Athens, Georgia: University of Georgia) p 111

    Google Scholar 

  • De Paolis A, Mauro M L, Pomponi M, Cardarelli M, Spano L and Costantino P 1985 Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid ofAgrobacterium 1855;Plasmid 13 1–7

    PubMed  Google Scholar 

  • Depicker A, Van Montagu M and Schell J 1983 Plant cell transformation byAgrobacterium plasmids; inGenetic Engineering of Plants: An Agricultural Perspective (eds) T Kosuge, C P Meredith and A Hollaender (New York: Plenum Press) pp 143–176

    Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schell J and Van Montagu M 1985 Frequencies of simultaneous transformation with different T-DNAs and their relevance to theAgrobacterium/plant cell interaction;Mol. Gen. Genet. 201 477–484

    CAS  Google Scholar 

  • Deshayes A, Herrera-Estrella L and Caboche M 1985 Liposome mediated transformation of tobacco mesophyll protoplasts by anE. coli plasmid;EMBO J. 4 2731–2739

    PubMed  CAS  Google Scholar 

  • Dhaese P, De Greeve H, Gielen J, Seurinck J, Van Montagu M and Schell J 1983 Identification of sequences involved in the polyadenylation of higher plant nuclear transcripts usingAgrobacterium T-DNA genes as models;EMBO J. 2 419–426

    PubMed  CAS  Google Scholar 

  • Doring H P, Tillmann E and Starlinger P 1984 DNA sequence of the maize transposable elementDissociation;Nature (London) 307 127–130

    CAS  Google Scholar 

  • Draper J, Mackenzie I A, Davey M R and Freeman J P 1983 Attachment ofAgrobacterium tumefaciens to mechanically isolatedAsparagus cells;Plant Sci. Lett. 29 227–236

    Google Scholar 

  • Ecker J R and Davis R W 1985 Expression of a chimeric phenylalanine ammonialyase gene introduced into carrot cells by electroporation; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 69

    Google Scholar 

  • Ersland D, Mathews J, Slightom J and Hall T C 1982 Analysis of cloned phaseolin DNA sequences using aXenopus laevis oocyte injection system;Plant Physiol. 69 sup. 139

  • Fedoroff N, Wessler S and Shure M 1983 Isolation of the transposable elementsAc andDs;Cell 35 235–242

    PubMed  CAS  Google Scholar 

  • Fedoroff N V, Furtek D B and Nelson O E 1984 Cloning of theBronze locus in maize by a simple and generalizable procedure using the transposable controlling elementAc;Proc. Natl. Acad. Sci. USA 81 3825–3829

    PubMed  CAS  Google Scholar 

  • Fraley R T and Horsch R B 1983In vitro plant transformation systems using liposomes and bacterial cocultivation; inGenetic Engineering of Plants: An Agricultural Perspective (eds) T Kosuge, C P Meredith and A Hollaender (New York: Plenum Press) pp 177–194

    Google Scholar 

  • Fraley R T, Rogers S G, Horsch R B, Sanders P R, Flick J S, Adams S P, Bittner M I, Brand L A, Fink C L, Fry J S, Galluppi G R, Goldber S B, Hoffman N L and Woo S C 1983 Expression of bacterial genes in plant cells;Proc. Natl. Acad. Sci. USA 80 4083–4087

    Google Scholar 

  • Fraley R T, Horsch R B, Matzke A, Chilton M, Chilton W and Sanders P R 1984In vitro transformation ofPetunia cells by an improved method of co-cultivation withA. tumefaciens strains;Plant Mol. Biol. 3 371–378

    CAS  Google Scholar 

  • Fraley R T, Rogers S G, Horsch R B, Eichholtz D A, Flick J S, Fink C L, Hoffman N L and Sanders P R 1985 The SEV system: A new disarmed Ti plasmid vector system for plant transformation;Bio/Technology 3 629–635

    CAS  Google Scholar 

  • Frear D S, Mansager E R, Swanson H H and Tanaka F S 1983 Metribuzin metabolism in tomato: Isolation and identification of N-glycoside conjugates;Pestic. Biochem. Physiol. 19 270–281

    CAS  Google Scholar 

  • Freeling M 1984 Plant transposable elements and insertion sequences;Ann. Rev. Plant Physiol. 35 277–298

    CAS  Google Scholar 

  • Freeman J P, Draper J, Davey M R, Cocking E C, Gartland K M A, Harding K and Pental D 1984 A comparison of methods for plasmid delivery into plant protoplasts;Plant Cell Physiol. 25 1353–1367

    CAS  Google Scholar 

  • Fromm M, Taylor L P and Walbot V 1985 Expression of genes transferred into monocot and dicot plant cells by electroporation;Proc. Natl. Acad. Sci. USA 82 5824–5828

    PubMed  CAS  Google Scholar 

  • Fromm M, Taylor L P and Walbot V 1986 Stable transformation of maize after gene transfer by electroporation;Nature (London) 319 791–794

    CAS  Google Scholar 

  • Gardner R C 1983 Plant viral vectors: CaMV as an experimental tool; inGenetic Engineering of Plants: An Agricultural Perspective (eds) T Kosuge, C P Meredith and A Hollaender (New York: Plenum Press) pp 121–142

    Google Scholar 

  • Gardner R C and Knauf V C 1986 Transfer ofAgrobacterium DNA to plants requires a T-DNA border but not thevir E locus;Science 231 725–727

    PubMed  CAS  Google Scholar 

  • Gelvin S B, Karcher S J and Goldsbrough P B 1985 Use of a TR T-DNA promoter to express genes in plants and bacteria;Mol. Gen. Genet. 199 240–248

    CAS  Google Scholar 

  • Goodman R M 1981 The single stranded DNA plant viruses; inGenetic Engineering in Plant Sciences (ed) N J Panopoulos (New York: Praeger Scientific) pp 85–98

    Google Scholar 

  • Goldberg R B, Okamura J K and Jafuku D 1985 Soybean seed protein genes are developmentally regulated in tobacco plants; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 1

    Google Scholar 

  • Gordon-Kamm J and Bushnell W R 1985 Intranuclear microinjection of isolated protoplasts using differential interference contrast microscopy; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 109

    Google Scholar 

  • Hagiya M, Close T J, Tait R C and Kado C I 1985 Identification of pTiC58 plasmid encoded protein for virulence inAgrobacterium tumefaciens;Proc. Natl. Acad. Sci. USA 82 2669–2673

    PubMed  CAS  Google Scholar 

  • Hain R, Steinbiss H H and Schell J 1984 Fusion ofAgrobacterium andE. coli spheroplasts withNicotiana tabacum protoplasts: Direct gene transfer from micro organisms to higher plant;Plant Cell Rep. 8 60–64

    Google Scholar 

  • Hain R, Stabel P, Czernilowsky A P, Steinbiss H H, Herrera-Estrella L and Schell J 1985 Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts;Mol. Gen. Genet. 199 161–168

    CAS  Google Scholar 

  • Hammer R E, Pursel V G, Rexroad Jr C E, Wall R J, Bolt D J, Ebert K M, Palmiter R D and Brinster R L 1985 Production of transgenic rabbits, sheep and pigs by micro injection;Nature (London) 315 680–683

    CAS  Google Scholar 

  • Hanold D 1983In vitro transformation of protoplast derivedHyoscyamus muticus cells byAgrobacterium tumefaciens;Plant Sci. Lett. 30 177–183

    Google Scholar 

  • Harborne J B 1977 Higher plant-lower plant interactions-phytoalexins and phytotoxins; inIntroduction to Ecological Biochemistry (ed) J B Harborne (New York: Academic Press) pp 196–231

    Google Scholar 

  • Hasigawa S, Matsui C, Nagata T and Syono K 1983 Cytological study of the introduction ofAgrobacterium tumefaciens spheroplasts intoVinca rosea protoplasts;Can. J. Bot. 61 1052–1057

    Google Scholar 

  • Hemstad P R and Reish B I 1985In vitro production of galls induced byAgrobacterium tumefaciens andAgrobacterium rhizogenes onVitis andRubus;J. Plant Physiol. 120 9–17

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M and Schell J 1983a Expression of chimeric genes transferred into plant cells using a Ti plasmid-derived vector;Nature (London) 303 209–213

    CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens J P, Van Montagu M and Schell J 1983b Chimeric genes as dominant selectable markers in plant cells;EMBO J. 2 987–995

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Van den Broeck G, Maenhaut R, Van Montagu M and Schell J 1984 Light inducible and chloroplast associated expression of a chimeric gene introduced intoNicotiana tabacum using a Ti plasmid vector;Nature (London) 310 115–120

    CAS  Google Scholar 

  • Hirschberg T and McIntosh L 1983 Molecular basis of herbicide resistance inAmaranthus hybridus;Science 222 1346–1348

    PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch P P, Hooykaas P J J and Schilperoort R A 1983 A binary vector strategy based on separation of vir- and T-region ofAgrobacterium tumefaciens Ti plasmid;Nature (London) 303 179–180

    CAS  Google Scholar 

  • Hoekma A, Van Harren M I J, Fellinger A J, Hooykaas P J J and Schilperoort R A 1985 Non-oncogenic plant vectors for use in theAgrobacterium binary system;Plant Mol. Biol. 5 85–89

    Google Scholar 

  • Holsters M, Villarroel R, Gielen J, Seurinck J, De Greve H, Van Montagu M and Schell J 1983 An analysis of boundaries of the octopine TL-DNA in tumors induced byAgrobacterium tumefaciens;Mol. Gen. Genet. 190 35–41

    CAS  Google Scholar 

  • Hooykaas P J J, Peerbolte R, Regensburg-Tuink A J G, De Vries P and Schilperoort R A 1982 A chromosomal linkage map ofAgrobacterium tumefaciens and a comparison with the maps ofRhizobium spp.;Mol. Gen. Genet. 188 12–17

    CAS  Google Scholar 

  • Hooykaas P J J and Schilperoort R A 1983 The molecular genetics of crown gall tumorigenesis;Adv. Genet. 22 209–283

    Google Scholar 

  • Hooykaas-Van Slogteren G M S, Hooykaas P J J and Schilperoort R A 1984 Expression of Ti plasmids genes in monocotyledonous plants infected withAgrobacterium tumefaciens;Nature (London) 311 763–764

    CAS  Google Scholar 

  • Horsch R B, Fraley R T, Rogers S G, Sanders P R, Lloyd A and Hoffmann N 1984 Inheritance of functional foreign genes in plants;Science 223 496–498

    PubMed  CAS  Google Scholar 

  • Horsch R B, Fry J E, Hoffmann N L, Wallroth M, Eichholte D, Rogers S G and Fraley R T 1985 A simple and general method for transferring genes into plants;Science 227 1229–1231

    CAS  Google Scholar 

  • Huffman G A, White F F, Gordon M P and Nester E W 1984 Hairy-root inducing plasmid: Physical map and homology to tumour inducing plasmids;J. Bacteriol. 157 269–276

    PubMed  CAS  Google Scholar 

  • Hull R 1981 Cauliflower mosaic virus DNA as a possible gene vector for higher plants; inGenetic Engineering in Plant Sciences (ed) N J Panopoulos (New York: Praeger Scientific) pp 99–109

    Google Scholar 

  • Inze D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M and Schell J 1984 Genetic analysis of the individual T-DNA genes ofAgrobacterium: Further evidence that two genes are involved in indole-3-acetic acid synthesis;Mol. Gen. Genet. 194 265–274

    CAS  Google Scholar 

  • Isola N R, Chourey P S, Sharpe D Z, Howell S H and Dennis E S 1985 Transient expression of chloramphenicol acetyl transferase gene under the control of maize ADH-1 promoter in maize and sorghum cells; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 113

    Google Scholar 

  • Jayaswal R K, Virtis E L and Gelvin S B 1985 Use of co-cultivation technique to study the early events in the transfer and integration of the T-DNA into plant genome; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 62

    Google Scholar 

  • Jia J F, Shillito R D and Potrykus I 1983 Crown gall transformation of regenerating protoplasts of haploid and diploidPetunia hybrida var Mitchell byA. tumefaciens;Z. Pflanzenphysiol. 112 1–6

    Google Scholar 

  • Jones J D G, Dunsmuir P and Bedbrook J 1985 High level expression of introduced chimeric genes in regenerated transformed plants;EMBO J. 4 2411–2418

    PubMed  CAS  Google Scholar 

  • Karcher S J, Di Rita V J and Gelvin S B 1984 Transcript analysis of TR DNA in octopine-type crown gall tumors;Mol. Gen. Genet. 194 159–165

    CAS  Google Scholar 

  • Keith B and Chua N H 1985 A wheat mRNA is spliced inefficiently and polyadenylated at novel sites in transgenic tobacco; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 114

    Google Scholar 

  • Kemp J D, Sutton D W, Fink C, Barker R F and Hall T C 1983Agrobacterium mediated transfer of foreign genes into plants; inGenetic Engineering: Applications to Agriculture (ed) L D Owens (Totowa: Rowman and Allanheld) pp 215–228

    Google Scholar 

  • Klee H, Montoya A, Horodyski F, Lichtenstein C, Garfinkel D, Fuller S, Flores C, Peschon J, Nester E W and Gordon M P 1984 Nucleotide sequence of thetms genes of the pTiA6NC octopine Ti plasmid: Two gene products involved in plant tumoregenesis;Proc. Natl. Acad. Sci. USA 81 1728–1732

    PubMed  CAS  Google Scholar 

  • Klein T M, Sanford J C and Wolf E 1985 Particle gun technology: A novel method for the introduction of DNA into living cells;SM Biotechnology in Plant Science: Relevance to agriculture in the eighties, (New York: Ithaca) Cornell Univ. Poster 28

  • Kleinhofs A and Behki R 1977 Prospects for plant genetic modification by nonconventional methods;Ann. Rev. Genet. 11 79–101

    PubMed  CAS  Google Scholar 

  • Knauf V C, Yanofsky M F, Gordon M P and Nester E W 1983 Genetic analysis of host range expression byAgrobacterium; inMolecular Genetics of Bacterial Plant Interaction (ed) A Puhler (Berlin, Heidelberg: Springer-Verlag) pp 240–247

    Google Scholar 

  • Koukolikovä-Nicola Z, Shillito R D, Hohn B, Wang K, Van Montagu M and Zambryski P 1985 Involvement of circular intermediates in the transfer of T-DNA fromAgrobacterium tumefaciens to plant cells;Nature (London) 313 191–196

    Google Scholar 

  • Kreis M, Forde B G, Bahramian B, Shewry P R and Miflin B J 1982 Molecular biology of storage proteins in developing endosperm of mutant and normal barley and related cereals;Plant Physiol. 69 sup. 20

  • Kresn F A, Molendijk L, Wullems G J and Schilperoort R A 1985a The role of bacterial attachment in the transformation of cell wall regenerating tobacco protoplasts byAgrobacterium tumefaciens;Planta 166 300–309

    Google Scholar 

  • Krens F A, Mans R M W, Van Slogteren Hoge J H C, Wullems G J and Schilperoort R A 1985b Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti plasmid DNA: Co-transfer of T-DNA and non T-DNA sequences;Plant Mol. Biol. 5 223–234

    CAS  Google Scholar 

  • Lamppa G, Nagy F and Chua N H 1985 Light regulated and organ specific expression of a wheat Cab gene in transgenic tobacco;Nature (London) 316 750–752

    CAS  Google Scholar 

  • Langridge W H R, Li B J, Szalay A A, Nishaguchi M and Zaitlin M 1985 Electrical field mediated transformation of plant protoplasts; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 101

    Google Scholar 

  • La Rossa R A and Smulski D R 1984 TheilvB encoded acetolactate synthase is resistant to the herbicide sulfometuron methyl;J. Bacteriol. 160 391–394

    Google Scholar 

  • Laser M and Eriksson T 1985 Transformation ofBrassica campestris withAgrobacterium tumefaciens; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 110

    Google Scholar 

  • Ledoux L 1975Genetic manipulations with plant material (New York: Plenum Press) p 601

    Google Scholar 

  • Leemans J, Shaw C, Deblaere R, De Greve H, Hernalsteens J P, Maes M, Van Montagu M and Schell J 1981 Site specific mutagenesis ofAgrobacterium Ti plasmids and transfer of genes to plant cells;J. Mol. Appl. Genet. 1 149–164

    PubMed  CAS  Google Scholar 

  • Levins D A 1971 Plant phenolics: An ecological perspective;Am. Nat. 105 157–181

    Google Scholar 

  • Lipetz J 1966 Crown gall tumorigenesis II. Relationship between wound healing and the tumorigenic response;Cancer Res. 26 1597–1604

    PubMed  CAS  Google Scholar 

  • Lorz H, Baker B and Schell J 1985 Gene transfer to cereal cells mediated by protoplast transformation;Mol. Gen. Genet. 199 178–182

    Google Scholar 

  • Marton L, Wullens G J, Molendijk L and Schilperoort R A 1979In vitro transformation of cultured cells fromNicotania tabacum byAgrobacterium tumefaciens;Nature (London) 277 129–131

    Google Scholar 

  • Mathews B F and Cres D E 1981 Liposome mediated delivery of DNA to carrot protoplasts;Planta 153 90–94

    Google Scholar 

  • Mathews H V, Bhatia C R, Mitra R, Krishna T G and Rao P S 1985 Regeneration of shoots fromBrassica juncea (Linn) Czern and Coss cells transformed byAgrobacterium tumefaciens and expression of nopaline dehydrogenase genes;Plant Sci. 39 49–54

    CAS  Google Scholar 

  • Matzke A J M and Chilton M D 1981 Site specific insertion of genes into T-DNA of theAgrobacterium tumor inducing plasmids: An approach to genetic engineering of higher plant cells;J. Mol. Appl. Genet. 1 39–49

    PubMed  CAS  Google Scholar 

  • Matzke M and Matzke A J M 1985 A maize seed storage protein gene is not expressed in genetically engineered tobacco callus or in the leaves or seeds of regenerated tobacco plants; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia)

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R and Fraley R 1986 Leaf disc transformation of cultivated tomato (L. esculentum) usingAgrobacterium tumefaciens;Plant Cell Rep. 5 81–84

    CAS  Google Scholar 

  • Menage A and Morel G 1964 Sur la presence d’ octopine dans les tissus de crown gall;C. R. Acad. Sci. Ser. D 259 4795–4796

    CAS  Google Scholar 

  • Meyer P, Walgenbach E, Bussmann K, Hombrecher G and Saedler H 1985 Synchronized tobacco protoplasts are efficiently transformed by DNA;Mol. Gen. Genet. 201 513–518

    CAS  Google Scholar 

  • Miki B L 1985 The development of microinjection technology; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 28

    Google Scholar 

  • Mischke S and Owens L 1985 Gene transfer and electric fields; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 112

    Google Scholar 

  • Mitra R K, Bhatia C R and Rabson R 1979 Bioenergetic cost of altering the amino acid composition of cereal grain;Cereal Chem. 56 249–252

    CAS  Google Scholar 

  • Morelli G, Nagy F, Fraley R T, Rogers S G and Chua N H 1985 A short conserved sequence is involved in the light inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea;Nature (London) 315 200–204

    CAS  Google Scholar 

  • Murai N, Sutton D W, Murray M G, Slightom J L, Merlo D J, Reichert N A, Sengupta-Gopalan C, Stock C A, Baker R F, Kemp J D and Hall T C 1983 Phaseolin gene from bean is expressed after transfer to sunflower via tumour inducing plasmid vectors;Science 222 476–482

    PubMed  CAS  Google Scholar 

  • Murai N, Ohshima M and Sakamoto M 1985 Plant transformation with Ti plasmid derived binary vector; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 115

    Google Scholar 

  • Nagy F, Morelli G, Fraley R T, Rogers S G and Chua N H 1985 Photoregulated expression of a pea rbc S gene in leaves of transgenic plants;EMBO J. 4 3063–3068

    PubMed  CAS  Google Scholar 

  • Nester E W and Kosuge T 1981 Plasmids specifying plant hyperplasia;Ann. Rev. Microbiol. 35 531–565

    CAS  Google Scholar 

  • Nester E W, Gordon M P, Richard A M and Yanofsky M F 1984 Crown gall: A molecular and physiological analysis;Ann. Rev. Plant Physiol. 35 387–413

    CAS  Google Scholar 

  • Notani N K and Bhatia C R 1985 Transposable elements of maize and other vectors for plant DNA transfer;Rev. Biotechnol. Series 1, 1–36 (NBTB, DST, New Delhi)

    Google Scholar 

  • Ohgamara T, Uchimiya H and Haida H 1983 Uptake of liposome encapsulated plasmid DNA by plant protoplasts and molecular fate of foreign DNA;Protoplasma 116 145–148

    Google Scholar 

  • Okada K, Hasigawa S, Syono K and Nagata T 1985 Further evidence for the transformation ofVinca rosea protoplasts byAgrobacterium tumefaciens spheroplasts;Plant Cell Rep. 4 133–137

    CAS  Google Scholar 

  • Ooms G and Lenton J R 1985 T-DNA genes to study plant development: Precocious tuberisation and enhanced cytokinins inA. tumefaciens transformed potato;Plant Mol. Biol. 5 205–215

    CAS  Google Scholar 

  • O’Reilly C, Shepherd N S, Pereira A, Schwarz-Sommer Z, Betram I, Robertson D S, Peterson P A and Saedler H 1985 Molecular cloning of thea1 locus ofZea mays using the transposable elementsEn andMu1;EMBO J. 4 877–882

    PubMed  Google Scholar 

  • Palmiter R D, Brinster R L, Hammer R E, Trumbauer M E, Rosenfeld M G, Birnberg N C and Evans R M 1982 Dramatic growth of mice that develop from eggs microinjected with metallothione in growth hormone fusion genes;Nature (London) 300 611–615

    CAS  Google Scholar 

  • Paszkowski J, Shillito R D, Saul M, Mandak V, Hohn T, Hohn B and Potrykus I 1984 Direct gene transfer to plants;EMBO J. 3 2717–2722

    PubMed  CAS  Google Scholar 

  • Peacock W J 1984 The impact of molecular biology on genetic resources; inGenetics: New Frontiers (eds) V L Chopra, B C Joshi, R P Sharma and H C Bansal (New Delhi: Oxford, IBH) Vol. 4, pp 15–22

    Google Scholar 

  • Peerbolte R, Krens F A, Mans R M W, Floor M, Hoge J H C, Wullems H J and Schilperoort R A 1985 Transformation of plant protoplasts with DNA co-transformation of non-selected calf thymus carrier DNA and meiotic segregation of transforming DNA sequences;Plant Mol. Biol. 5 235–246

    CAS  Google Scholar 

  • Pelham H R B 1982 A regulatory upstream promoter element in theDrosophila Hsp70 heat shock gene;Cell 30 517–528

    PubMed  CAS  Google Scholar 

  • Pischl D L and Farrand S K 1984 Characterization of transposon Tn5 facilitated donor strains and development of a chromosomal linkage map forAgrobacterium tumefaciens;J. Bacteriol. 159 1–8

    PubMed  CAS  Google Scholar 

  • Pollock K, Barfield D G, Robinson S J and Shield R 1985 Transformation of protoplast derived cell colonies and suspension cultures byAgrobacterium tumefaciens;Plant Cell Rep. 4 202–206

    CAS  Google Scholar 

  • Potrykus I, Paszkowski J, Saul M W, Petruska J and Shillito D 1985a Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer;Mol. Gen. Genet. 199 169–177

    PubMed  CAS  Google Scholar 

  • Potrykus I, Paszkowski J, Saul M, Shillito R, Lebus S K, Negrutio I, Muller T and Schocher R 1985b Direct gene transfer to plants and gene isolation from plants; InAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 5

    Google Scholar 

  • Potrykus I, Saul M, Petruska J, Paszkowski J and Shillito R D 1985c Direct gene transfer into protoplasts of a graminaccous monocot;Mol. Gen. Genet. 199 183–188

    CAS  Google Scholar 

  • Potrykus I, Shillito R D, Saul M W and Paszkowski J 1985d Direct gene transfer: State of the art and future potential;Plant Mol. Biol. Rep. 3 117–128

    CAS  Google Scholar 

  • Ream L W, Gordon M P and Nester E W 1983 Multiple mutations in the T-region of theAgrobacterium tumefaciens tumour inducing plasmid;Proc. Natl. Acad. Sci. USA 80 1660–1664

    PubMed  CAS  Google Scholar 

  • Reich T, Iyer V N and Miki B 1985 Transformation of alfalfa protoplasts by intranuclear microinjection of Ti plasmids; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 28

    Google Scholar 

  • Robertson D S 1985 A possible technique for isolating genic DNA for quantitative traits in plants;J. Theor. Biol. 117 1–10

    CAS  Google Scholar 

  • Schell J and Van Montagu M 1983 The Ti plasmids as natural and as practical gene vectors for plants;Bio/Technology 1 175–180

    CAS  Google Scholar 

  • Schell J, Van Montagu M, Hernalsteens J P, De Greve H, Leemans J, Koncz C, Willmitzer L, Otten L and Schroder G 1983 Gene vectors for higher plants; inGenetic Engineering Applications to Agriculture (ed) L D Owens (Totowa: Rowman and Allanheld) pp 197–213

    Google Scholar 

  • Schell J, Van Montagu M, Zambryski P, Schroder J, Herrera-Estrella L, De Block M and Inze D 1984 Gene transfer as a means to study the mechanism of gene expression regulation in plants; inGenetics New Frontiers, (New Delhi: Oxford and IBH) Vol. 1, pp 474–485

    Google Scholar 

  • Schell J, Kreuzaler F, Kaulen H, Willmitzer L, Eckes P, Rosahl S, Spena A, Baker B and Fedoroff N 1985 Use of Ti plasmid vectors to study the transfer and regulation of expression of chimeric genes in plants; inAbstracts of first international congress on plant molecular biology (ed) G A Galau (Athens, Georgia: University of Georgia) p 5

    Google Scholar 

  • Schlesinger M I, Ashburner M and Tissieres A (eds) 1982)Heat shock from bacteria to man, (New York: Cold Spring Harbor Lab. Press) p 440

    Google Scholar 

  • Schoffl F and Baumann G 1985 Thermo induced transcripts of a soybean heat shock gene after transfer into sunflower using a Ti plasmid vector;EMBO J. 4 1119–1124

    PubMed  Google Scholar 

  • Shaw C A, Leemans J, Shaw C H, Van Montagu M and Schell J 1983 General method for the transfer of cloned genes to plant cells;Gene 23 315–330

    PubMed  CAS  Google Scholar 

  • Shillito R D, Saul M W, Paszkowski J, Muller M and Potrykus I 1985 High efficiency direct gene transfer to plants;Bio/Technology 3 1099–1104

    Google Scholar 

  • Shillito R D, Saul M W, Paszkowski J and Potrykus I 1986 Direct gene transfer to plants;Newsl. Int. Assoc. Plant Tissue Culture, pp 5–15

  • Shimabukuro R H, Frear D S, Swanson H R and Walsh W C 1971 Glutathione conjugation: An enzymatic basis for atrazine resistance in corn;Plant Physiol. 47 10–14

    PubMed  CAS  Google Scholar 

  • Shure M, Wessler S and Fedoroff N 1983 Molecular identification and isolation of thewaxy locus in maize;Cell 35 225–233

    PubMed  CAS  Google Scholar 

  • Simmonds N W 1983 Plant Breeding: The State of Art; in Genetic Engineering of Plants: An Agricultural Perspective (eds) T Kosuge, C P Meredith and A Hollaender (New York: Plenum Press) pp 5–27

    Google Scholar 

  • Simpson J, Timko M P, Cashmore A R, Schell J, Van Montagu M and Herrera-Estrella L 1985 Light inducible and tissue specific expression of a chimeric gene under control of the 5′ flanking sequence of a pea chlorophyll a/b binding protein;EMBO J. 4 2723–2729

    PubMed  CAS  Google Scholar 

  • Smithies O, Gregs R G, Boggs S S, Koralewski M A and Kucherlapati R S 1985 Insertion of DNA quences into the human chromosomal β-globin locus by homologous recombination;Nature (London) 317 230–234

    CAS  Google Scholar 

  • Spena A, Hain R, Ziervogel V, Saedler H and Schell J 1985 Construction of a heat inducible gene for plants: Demonstration of heat inducible activity of theDrosophila hsp70 promoter in plants;EMBO J. 4 2739–2743

    PubMed  CAS  Google Scholar 

  • Stachel S E, Messens E, Van Montagu M and Zambryski P 1985 Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer inAgrobacterium tumefaciens;Nature (London) 318 624–629

    Google Scholar 

  • Sutton W D, Gerlach W L, Schwartz D and Peacock W J 1984 Molecular analysis ofDs controlling element mutations at theAdh1 locus of maize;Science 223 1265–1268

    PubMed  CAS  Google Scholar 

  • Sybenga J 1983 Genetic manipulation in plant breeding: Somatic versus generative;Theor. Appl. Genet. 66 179–201

    CAS  Google Scholar 

  • Thomashow M F, Nutter R, Postle K, Chilton M D, Blattner F R, Powell A, Gordon M P and Nester E W 1980 Recombination between higher plant DNA and the Ti plasmid ofAgrobacterium tumefaciens;Proc. Natl. Acad. Sci. USA 77 6448–6452

    PubMed  CAS  Google Scholar 

  • Thomashow L S, Reeves S and Thomashow M F 1984 Crown gall oncogenesis: Evidence that a T-DNA gene from theAgrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indole acetic acid;Proc. Natl. Acad. Sci. USA 81 5071–5075

    PubMed  CAS  Google Scholar 

  • Thomashow M F, Hugly S, Bnehholz W G and Thomashow L S 1986 Molecular basis for the auxin-independent phenotype of crown gall tumor tissues;Science 231 616–618

    PubMed  CAS  Google Scholar 

  • Timko M P, Kausch A P, Castresana C, Fassler J, Herrera-Estrella L, Van den Broeck G, Van Montagu M, Schell J and Cashmore A R 1985 Light regulation of plant gene expression by an upstream enhancer like element;Nature (London) 318 579–582

    CAS  Google Scholar 

  • Turgeon R, Wood H N and Braun A C 1976 Studies on the recovery of crown gall tumor cells;Proc. Natl. Acad. Sci. USA 73 3562–3564

    PubMed  Google Scholar 

  • Ursic D, Slightom J R and Kemp J D 1983Agrobacterium tumefaciens T-DNA integrates into multiple sites of the sunflower crown gall genome;Mol. Gen. Genet. 190 494–503

    CAS  Google Scholar 

  • Van Haute E, Joos H, Maes M, Warren G, Van Montagu M and Schell J 1983 Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: A novel strategy for the reversed genetics of the Ti plasmids ofAgrobacterium tumefaciens;EMBO J. 2 411–417

    PubMed  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort R A and Schell J 1974 Large plasmid inAgrobacterium tumefaciens essential for crown gall inducing ability;Nature (London) 252 169–170

    Google Scholar 

  • Van Onckelen H, Rüdelshein P, Inzē D, Follin A, Messens E, Horemans S, Schell J, Van Montagu M and De Greef J 1985 Tobacco plants transformed with theAgrobacterium T-DNA gene 1 contain high amounts of indole-3-acetamide;FEBS Lett. 181 373–376

    Google Scholar 

  • Vasil I K 1986 Advantages of embryogenic cell cultures of Gramineae; inNuclear techniques and in vitro culture for plant improvement; Proc. Symp. IAEA, Vienna pp 71–75

  • Velten J, Velten L, Hain R and Schell J 1984 Isolation of a dual plant promoter fragment from the Ti plasmid ofAgrobacterium tumefaciens;EMBO J. 3 2723–2730

    PubMed  CAS  Google Scholar 

  • Virtis E L and Gelvin S B 1985 Analysis of transfer of tumor inducing plasmids fromAgrobacterium tumefaciens toPetunia protoplasts;J. Bacteriol. 162 1030–1038

    Google Scholar 

  • Waldron C, Murphy E B, Robers J L, Gustafson G D, Armour S L and Malcolm S K 1985 Resistance to hygromycin B: A new marker for plant transformation studies;Plant Mol. Biol. 5 103–108

    CAS  Google Scholar 

  • Wallroth M, Gerats A G M, Rogers S G, Fraley R T and Horsch R B 1986 Chromosomal localization of foreign genes inPetunia hybrida;Mol. Gen. Genet. 202 6–16

    CAS  Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M and Zambryski P 1984 Right 25bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer fromAgrobacterium to the plant genome;Cell 38 455–462

    PubMed  CAS  Google Scholar 

  • Watson B, Currier T C, Gordon M P, Chilton M D and Nester E W 1975 Plasmid required for virulence ofAgrobacterium tumefaciens;J. Bacteriol. 123 255–264

    PubMed  CAS  Google Scholar 

  • White P R and Braun A C 1942 A cancerous neoplasm of plants: Autonomous bacteria free crown gall tissue;Cancer Res. 2 597–617

    Google Scholar 

  • White F F, Ghidossi G, Gordon M P and Nester E W 1982 Tumour induction byAgrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome;Proc. Natl. Acad. Sci. USA 79 3193–3197

    PubMed  CAS  Google Scholar 

  • Wienand U, Langridge P and Feix G 1981 Isolation and characterization of a genomic sequence of maize coding for zein gene;Mol. Gen. Genet. 182 440–444

    CAS  Google Scholar 

  • Willmitzer L, Dhaese P, Schreier P H, Schmalenbach W, Van Montagu M and Schell J 1983 Size, location and polarity of T-DNA encoded transcripts present in nopaline crown gall tumors: Evidence for common transcripts present in both octopine and nopaline plant tumors;Cell 32 1045–1056

    PubMed  CAS  Google Scholar 

  • Yadav N S, Postle K, Saiki R K, Thomashow M F and Chilton M D 1980 T-DNA of a crown gall teratoma is covalently joined to host plant DNA;Nature (London) 287 458–461

    CAS  Google Scholar 

  • Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M and Schell J 1974 Supercoiled circular DNA in crown gall inducingAgrobacterium strains;J. Mol. Biol. 86 109–127

    PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leeman J, Van Montagu M and Schell J 1983a Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity;EMBO J. 2 2143–2150

    PubMed  CAS  Google Scholar 

  • Zambryski P, Herrera-Estrella L, De Block M, Van Montagu M and Schell J 1983b The use of the Ti plasmid ofA. tumefaciens to study the transfer and expression of foreign DNA in plant cells: New vectors and methods; inGenetic Engineering: Principles and Methods (eds) A Hollaender and J Setlow (New York: Plenum Press) Vol. 6 253–278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, C.R., Viegas, P., Bhagwat, A. et al. Genetic transformation of plants. Proc. Indian Acad. Sci. 96, 79–112 (1986). https://doi.org/10.1007/BF03053326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03053326

Keywords

Navigation