Skip to main content
Log in

Flow and heat transfer for a power-law electrically conducting fluid flowing between parallel plates under transverse magnetic field with viscous dissipation

  • Published:
Proceedings of the Indian Academy of Sciences - Section A Aims and scope Submit manuscript

Abstract

The flow and heat transfer problem with viscous dissipation for electrically conducting non-Newtonian fluids with power-law model in the thermal entrance region of two parallel plates with magnetic field under constant heat flux and constant wall temperature conditions has been studied. The governing equations have been solved numerically using quasilinearization technique and implicit finite-difference scheme. It has been found that the effect of viscous dissipation on heat transfer is quite significant for heating and cooling conditions at the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

half of the distance between the plates

bx :

induced magnetic field

bx :

dimensionless induced magnetic field

B0 :

applied magnetic field

Br:

Brinkman number

Cv :

specific heat at constant volume

Ey :

electric field alongy-direction

h:

enthalpy

Hm:

Hartmann number defined by equation (3b)

y:

current iny-direction

Jy :

dimensionless current iny-direction

K:

dimensionless parameter defined by equation (3a)

k1 :

thermal conductivity

n:

index of the power-law model

Nu:

Nusselt number defined by equation (15)

px :

pressure gradient along axial direction given by (3c)

Px :

dimensionless pressure gradient in axial direction defined by equation (3b)

qw :

wall heat flux

Re:

Reynold’s number defined by equation (3b)

Rm:

magnetic Reynold’s number

T:

temperature

Tb :

bulk temperature

u:

axial velocity

ū:

average axial velocity defined by equation (3a)

U:

dimensionless axial velocity

Ū:

dimensionless axial velocity defined by equation (11)

z:

vertical distance

Z:

dimensionless vertical distance

θ:

dimensionless temperature

θb :

dimensionless bulk temperature

μ:

viscosity

μ1 :

magnetic permeability

ξ:

dimensionless axial distance

ρ:

density

σ:

electrical conductivity

τ:

shear stress.

′:

prime denotes differentiation with respect toZ.

c:

critical value

o:

inlet condition

w:

wall condition

References

  1. Sutton, G. W. and Sherman, A.,Engineering Magnetohydrodynamics, McGraw-Hill341 (1965).

  2. Seigel, R.,Trans. ASME, J. Appl. Mech. 25 415 (1958).

    Google Scholar 

  3. Nigam, S. D. and Singh, S. N.,Quart. J. Mech. Appl. Math. 13 85 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpher, R. A.,Int. J. Heat Mass Transfer 3 108 (1961).

    Article  Google Scholar 

  5. Perlmutter, M. and Siegel, R., Heat transfer to an electrically conducting fluid flowing in a channel with a transverse magnetic field, NASA Tech. Nate D-875 (1961).

  6. Michiyoshi, I. and Matsumoto, R.,Int. J. Heat Mass Transfer 7 101 (1964).

    Article  Google Scholar 

  7. Hwang, C. L., Kniper, P. J. and Fan, L. T.,Int. J. Heat Mass Transfer 9 773 (1966).

    Article  Google Scholar 

  8. Hsia, E. S.,Trans. ASME, J. Appl. Mech. 33 665 (1971).

    Google Scholar 

  9. Sato, H.,J. Phys. Soc. Japan16 423 (1961).

    Google Scholar 

  10. Tani, I.,J. Aerospace Sci. 29 297 (1962).

    MATH  MathSciNet  Google Scholar 

  11. Sarpkaya, T.,AIChE J. 7 324 (1961).

    Article  Google Scholar 

  12. Moore, F. K.,Theory of Laminar Flows, Vol. 4, Princeton Univ. Press, 691 (1964).

  13. Bellman, R. E. and Kalaba, R. E.,Quasilinearization and Non-linear Boundary Value Problems, Elsevier (1965).

  14. Vlachopoulos, J. and Keung, C. K. J.,AIChE. J. 18 1272 (1972).

    Article  Google Scholar 

  15. Ou, J. W. and Cheng, K. C.,Appl. Sci. Res. 28 289 (1973).

    Google Scholar 

  16. Sundaram, K. M. and Nath, G.,Proc. Indian Acad. Sci. 83 A 50 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundaram, K.M., Nath, G. Flow and heat transfer for a power-law electrically conducting fluid flowing between parallel plates under transverse magnetic field with viscous dissipation. Proc. Indian Acad. Sci. 83, 188–201 (1976). https://doi.org/10.1007/BF03051339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03051339

Keywords

Navigation