Skip to main content
Log in

PET measurement of the coronary flow reserve and microcirculatory function

Messung der Koronarflußreserve und der mikrozirkulatorischen Funktion

  • Published:
Herz Aims and scope Submit manuscript

Abstract

This review article discusses some of the potentially beneficial effects of calcium antagonists on the coronary microcirculation. These include their vasodilating action on coronary resistance vessels as well as their effects on extravascular resistance (i.e. intramyocardial pressure).

Examples are presented of how the non-invasive measurement of myocardial blood flow and flow reserve by means of positron emission tomography (PET) can contribute to the understanding of the effects of drug treatment on the coronary microcirculation.

The action of calcium antagonists on the coronary microcirculation can contribute to explain the efficacy, of these drugs against ischemia and ischemia-reperfusion damage.

Zusammenfassung

Kürzlich publizierte klinische Studien haben gezeigt, daß eine Konstriktion der kleinen koronaren Arteriolen eine besondere Rolle in der Pathogenese einer myokardialen Ischämie bei Patienten mit koronarer Herzerkrankung spielen. Zusätzlich können Symptome und Zeichen der myokardialen Ischämie bei Patienten aufgedeckt werden, auch wenn eine koronare Herzerkrankung mit dem Goldstandard der Koronarographie nicht nachgewiesen, werden kann. Pathophysiologisch ist von Bedeutung, daß die kleinen Arteriolen unter 450 μm die Hauptdeterminanten des koronaren Gefäßwiderstands darstellen und ein Abfall um 50% des Perfusionsdrucks relativ zum Aortendruck auftreten kann, wenn die Gefäße einen Durchmesser von 70 bis 440 μm haben. Die weitere Widerstandserhöhung liegt in den Gefäßen unter 100 μm. Diese Gefäße sind auch diejenigen, die für die Autoregulation der Myokarddurchblutung verantwortlich sind.

Verschiedene Verfahren wurden verwendet, um die Myokarddurchblutung zu messen. Experimentell werden die intravitale Mikroskopie und Stroboskopie klinisch die Koronarsinusmodulationsmessung sowie die kürzlich eingeführte intrakoronare Doppler-Untersuchung während der Herzkatheterisierung verwendet.

Die planare Gammaszintigraphie oder auch SPECT-Untersuchung (Single-Photon-Emission-Computed-Tomography) erlaubt für verschiedene Photonemitter die Aufdeckung einer regional unterschiedlichen Aktivitätsverteilung als Zeichen einer unterschiedlichen regionalen Myokarddurchblutung, ohne aber eine Quantifizierung zu erlauben. Die Positronenemissionstomographie dagegen ermöglicht die genaue lokalisierte Perfusionsmessung. Besonders hilfreich scheint die Verwendung von H2 15O und13NH3 zu sein. Dipyridamol wurde verwendet, um die vasodilatorische Flußreserve voll auszunutzen und damit die koronare Flußreserve zu bestimmen. Bei Sportlern wurden ein basaler Blutfluß von 2,7+-1,2 ml/m/g festgestellt sowie eine koronare Flußreserve von 3,6±1,0. Bei Patienten mit sekundärer Linksherzhypertrophie betrug die koronare Flußreserve 2,05±0,61 im Vergleich zu einem entsprechenden Kontrollkollektiv. Auch bei Patienten mit hypertropher Kardiomyopathie lag die Flußreserve mit 2,0±0,7 deutlich unter dem Normalbereich. Im Vergleich fand sich bei diesen Patienten mit dem gepulsten Doppler auch ein signifikanter Unterschied in bezug auf das Verhältnis von E/A im Einstromtrakt des linken Ventrikels. Verschiedene Mechanismen müssen in Betracht gezogen werden, um diese aufgedeckten pathologischen mikrovaskulären Perfusionsstörungen zu erklären. Eine aktive Vasokonstriktion oder Einfluß der vasodilatorischen Dilatation ist möglich. Auch ein Remodeling, der Gefäßwand könnte eine Rolle spielen, ebenso wie ein erhöhter intramyokardialer Druck (extravaskulärer Widerstand).

Die Positronenemissionstomographie erlaubt zum ersten Mal ein nichtinvasive Quantifizierung der myokardialen Perfusion und damit die Aufdeckung einer mikrovaskulären Perfusionsstörung, die bisher nur mittels kathetertechnik möglich gewesen ist. Es ist zu erwarten, daß weitere klinische Studien die Bedeutung dieser neuen Technik unterstreichen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo LI, Lammertsma AA, Rhodes CG, et al. Non-invasive quantification of regional myocardial blood flow in normal volunteers and patients with coronary artery disease using oxygen-15 labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991;83:875–85.

    PubMed  CAS  Google Scholar 

  2. Ashikawa K, Kanatsuka H, Suzuki T, et al. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 1986;59:704–11.

    PubMed  CAS  Google Scholar 

  3. Bache RJ, Cobb FR, Greenfield JC. Myocardial blood flow distribution during ischemia-induced vasodilatation in the unanesthetized dog. J Clin Invest 1974;54:1462–72.

    Article  PubMed  CAS  Google Scholar 

  4. Beller GA, Alten WJ, Cochavi S, et al. Assessment of regional myocardial perfusion by positron emission tomography after intracoronary administration of Ga-68 labeled albumin microspheres. J Comput Assist Tomogr 1979;3:447–52.

    Article  PubMed  CAS  Google Scholar 

  5. Bellina CR, Parodi O, Camici P, et al. Simultaneous in vitro and in vivo validation of nitrogen-13 ammonia for the assessment of regional myocardial blood flow. J Nucl Med 1990;31:1335–43.

    PubMed  CAS  Google Scholar 

  6. Bergmann SR, Fox KAA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with H2 15O. Circulation 1984;70:724–33.

    PubMed  CAS  Google Scholar 

  7. Bergmann SR, Herrero P, Markham J, et al. Noninvasive quantification of myocardial blood flow in human subjects with O-15 labelled water and positron emission tomography. J Am Coll Cardiol 1989; 14:639–52.

    PubMed  CAS  Google Scholar 

  8. Buckberg GD, Fixler DE, Archie JP, et al. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1972;30:67–81.

    PubMed  CAS  Google Scholar 

  9. Camici PG, Cecchi F, Gistri R, et al. Dipyridamole-induced subendocardial underperfusion in hypertrophic cardiomyopathy assessed by positron emission tomography. Cor Art Dis 1991;2:837–41.

    Google Scholar 

  10. Camici PG, Chiriatti G, Lorenzoni R, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coli Cardiol 1991;17:879–86.

    CAS  Google Scholar 

  11. Cannon RO, Dilsizian V, O’Gara PT, et al. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation 1991;83:1660–7.

    PubMed  Google Scholar 

  12. Cannon RO, Rosing DR, Maron BJ, et al. Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 1985;71:234–43.

    PubMed  Google Scholar 

  13. Chambers J, Bass C. Chest pain with normal coronary anatomy: a review of natural history and possible etiologic factors. Prog Cardiovasc Dis 1990;33:161–84.

    Article  PubMed  CAS  Google Scholar 

  14. Chilian WM, Eastham CL, Layne SM, et al. Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and microvascular dynamics. Prog Cardiovasc Dis 1988;31:17–38.

    Article  PubMed  CAS  Google Scholar 

  15. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 1986;251:H779–88.

    Google Scholar 

  16. Chilian WM, Layne SM, Eastham CL, et al. Heterogeneous microvascular coronary a-adrenergic vasoconstriction. Circ Res 1989;64:376–88.

    PubMed  CAS  Google Scholar 

  17. Choudhury L, Elliott P, Rimoldi O, et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Bas Res Cardiol 1999;94:49–59.

    Article  CAS  Google Scholar 

  18. Choudhury L, Rosen SD, Patel D, et al. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J 1997;18: 108–16.

    PubMed  CAS  Google Scholar 

  19. Clarke JG, Davies GJ, Kerwin R, et al. Coroonary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1987;1/8541:1057–9.

    Article  Google Scholar 

  20. Cobb FR, Bache RJ, Greenfield JC. Regional myocardial blood flow in awake dogs. J Clin Invest 1974;53:1618–25.

    Article  PubMed  CAS  Google Scholar 

  21. Cole JS, Hartley CJ. The pulsed Doppler coronary artery catheter. Preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 1977;56:1.

    Google Scholar 

  22. Dai X, Lindstrom P, Schwatz JS, et al. Coronary flow during exercise after selective a1 and a2 adrenergic blockade. Am J Physiol 1989;256:H1148–55.

    Google Scholar 

  23. De Silva R, Camici PG. Role of positron emission tomography in the investigation of human coronary circulation. Cardiovasc Res 1994;28:1595–612

    Article  PubMed  Google Scholar 

  24. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.

    PubMed  Google Scholar 

  25. Domenech RJ, Hoffman JJE, Noble MIM, et al. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res, 1969;25:581–96.

    PubMed  CAS  Google Scholar 

  26. Duncker DJ, van Zon NS, Crampton M, et al. Coronary pressureflow relationship and exercise: contribution of heart rate, contractility, and a1 adrenergic tone. Am J Physiol 1994;266:H795–810.

    Google Scholar 

  27. Folkow B. “Structural factor” in primary and secondary hypertension. Hypertension 1990;16:89–101.

    PubMed  CAS  Google Scholar 

  28. Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, and Swan HJC. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 1971;44:181.

    PubMed  CAS  Google Scholar 

  29. Gould KL. Dynamic coronary artery stenosis. Am J Cardiol 1980;45:286–92.

    Article  PubMed  CAS  Google Scholar 

  30. Gould, KL, Lipscomb K, Hamilton GW. A physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94.

    Article  PubMed  CAS  Google Scholar 

  31. Hartley CJ, Cole JS. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol 1974;37:626–9.

    PubMed  CAS  Google Scholar 

  32. Herrero P, Markham J, Shelton ME, et al. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathermatical model. Circulation 1990;82:1377–86.

    PubMed  CAS  Google Scholar 

  33. Heyndrickx GR, Muylaert P, Pannier JL. Adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 1982;242:H805–9.

    Google Scholar 

  34. Hoffman JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153–9.

    PubMed  CAS  Google Scholar 

  35. Hoffman JIE, Phelps ME. Positron emission tomography: principles and quantitation. In: Phelps ME, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and the heart. New York: Raven, 1986:113–48.

    Google Scholar 

  36. Hutchins GD, Schwaiger M, Rosenspire KC. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032–42.

    PubMed  CAS  Google Scholar 

  37. Iida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron emission tomography: strategy for quantification in relation to the partial-volume effect. Circulation 1989;78:104–15.

    Google Scholar 

  38. Johnson JA, Cavert HM, Lifson N. Kinetics concerned with distribution of isotopic water in isolated dog heart and skeletal muscle. Am J Physiol 1952;171:687–93.

    PubMed  CAS  Google Scholar 

  39. Krivokapich J, Smith GT, Huang SC, et al. Nitrogen-13 ammonia myocardial imaging at rest and with exercise in normal volunteers: quantification of coronary flow with positron emission tomography. Circulation 1989;80:1328–37.

    PubMed  CAS  Google Scholar 

  40. Kuo L, Davis MJ, Cannon MS, et al. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium dependent responses by L-arginine. Circ Res 1992;70:465–76.

    PubMed  CAS  Google Scholar 

  41. L’Abbate A, Marzilli M, Ballestra AM, et al. Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog’s heart. Cardiovasc Res 1980;14:21–9.

    Article  PubMed  Google Scholar 

  42. Larkin SW, Clarke JG, Keogh BG, et al. Intracoronary endothelin induces myocardial ischaemia by small vessel constriction in the dog. Am J Cardiol 1989;64:956–8.

    Article  PubMed  CAS  Google Scholar 

  43. Lipscomb K, Gould KL. Mechanism of the effect of coronary artery stenosis on coronary flow in the dog. Am Heart J. 1975;89:60–7.

    Article  PubMed  CAS  Google Scholar 

  44. Marcus ML, Chilian WM, Kanatsuka H, et al. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82:1–7.

    PubMed  CAS  Google Scholar 

  45. Marcus ML, Wilson RF, White CW. Methods of measurement of myocardial blood flow in patients: A critical review. Circulation 1987;76:245–53.

    PubMed  CAS  Google Scholar 

  46. Maron BJ. Sudden death in young athletes. Lessons from the Hank Gathers affair. N Engl J Med 1993;329:55–7.

    Article  PubMed  CAS  Google Scholar 

  47. Maron BJ, Epstein SE, Roberts WC. Causes of sudden death in competitive athletes. J Am Coll Cardiol 1986;7:204–14.

    Article  PubMed  CAS  Google Scholar 

  48. Maron BJ, Epstein SE, Roberts WC. Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol 1979;43:1086–102.

    Article  PubMed  CAS  Google Scholar 

  49. Maron BJ, Roberts WC Mc Allister HA, et al. Sudden death in young athletes. Circulation 1980;62:218–29.

    PubMed  CAS  Google Scholar 

  50. Maseri A, Crea F, Cianflone D. Myocardial ischaemia caused by distal coronary vasoconstriction. Am J Cardiol 1992;70:1602–5.

    Article  PubMed  CAS  Google Scholar 

  51. Maseri A. Coronary vasoconstriction: visible and invisible. N Engl J Med 1991;325:1579–80.

    PubMed  CAS  Google Scholar 

  52. McFadden EP, Clarke JG, Davies GJ, et al. Effect of intracoronary serotonin on coronary vessels in patients with stable and variant angina. N Engl J Med 1991;324:648–54.

    PubMed  CAS  Google Scholar 

  53. Murray PA, Vatner SF. α-adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 1979;45:654–60.

    PubMed  CAS  Google Scholar 

  54. Nabel EG, Ganz P, Gordon JB, et al. Dilatation of normal and constriction of atherosclerotic coronary arteries caused by cold pressor test. Circulation 1988;73:43–52.

    Google Scholar 

  55. Nabe EG, Ganz P, Gordon JB, et al. Atherosclerosis and endothelial function influence the coronary response to exercise. J Clin Invest 1989;83:1946–52.

    Article  Google Scholar 

  56. Newman CM, Maseri A, Hackett DR, et al. Response of angiographically normal and atherosclerotic left anterior descending coronary arteries to acetylcholine. Am J Cardiol 1990;66:1070–6.

    Article  PubMed  CAS  Google Scholar 

  57. Nienaber CA, Gambhir SS, Mody FV, et al. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy. Circulation 1993;87:1580–90.

    PubMed  CAS  Google Scholar 

  58. Patterson DL, Treasure T. The culprit coronary artery lesion. Lancet 1991;338:1379–80.

    Article  PubMed  CAS  Google Scholar 

  59. Pupita G, Maseri A, Kaski JC, et al. Myocardial ischaemia caused by distal coronary constriction in stable angina pectoris. N Engl J Med 1990;323:514–20.

    PubMed  CAS  Google Scholar 

  60. Radvan J, Choudhury L, Sheridan DJ, et al. Comparison of coronary vasodilator reserve in elite rowing athletes versus hypertrophic cardiomyopathy. Am J Cardiol 1997;80:1621–3.

    Article  PubMed  CAS  Google Scholar 

  61. Ringvist I Fisher LD, Mock M, et al. Prognostic value of angiographic indices of coronary artery disease from the Coronary Artery Surgery Study (CASS). J Clin Invest 1983;71:1854–66.

    Article  Google Scholar 

  62. Schelbert HR, Phelps MF, Hoffman EJ, et al. Regional myocardial perfusion assessed by N-13 labelled ammonia and positron computerized axial tomography. Am J Cardiol 1979; 43:209–18.

    Article  PubMed  CAS  Google Scholar 

  63. Schwartzopff B, Motz W, Frenzel H, et al. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993;88: 993–1003.

    Google Scholar 

  64. Selwyn AP, Yeung AC, Ryan TJ, Jr, et al. Pathophysiology of ischaemia in patients with coronary artery disease. Prog Cardiovasc Dis 1992;35:27–39.

    Article  PubMed  CAS  Google Scholar 

  65. Shah A, Schelbert HR, Schwaiger M, et al. Measurement of regional myocardial blood flow with N-13 ammonia and positron emission tomography in intact dogs. J Am Coll Cardiol 1985;5:92–100.

    Article  PubMed  CAS  Google Scholar 

  66. Strauer BE, Schwartzkopff B, Motz W, et al. Coronary vascular changes in the progression and regression of hypertensive heart disease. J Cardiovasc Pharmacol 1991;18:S20–7.

    Google Scholar 

  67. Tillmanns H, Ikeda S, Hansen H, et al. Microcirculation in the ventricle of the dog and turtle. Circ Res 1974;34:561–9.

    PubMed  CAS  Google Scholar 

  68. Tousoulis D., Davies G, McFaddden E, et al. Coronary vasomotor effects of serotonin in patients with angina. Relation to coronary stenosis morphology. Circulation 1993;88:1518–26.

    PubMed  CAS  Google Scholar 

  69. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36:2032–6.

    PubMed  CAS  Google Scholar 

  70. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  71. van der Waal EE. Nuclear cardiology and cardiac magnetic resonance. The Netherlands: Hans Soto, 1992.

    Google Scholar 

  72. Vita JA, Treasure CB, Yeung AC, et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked, increase in sensitivity to constrictor effects of catecholamines. Circulation 1992;85:1390–7.

    PubMed  CAS  Google Scholar 

  73. Wilson RA, Shea MJ, de Landsheere CH, et al. Validation of quantification of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography. Circulation 1984;70:717–23.

    PubMed  CAS  Google Scholar 

  74. Yada T, Hiramatsu O, Kimura A, et al. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 1993;72:939–46.

    PubMed  CAS  Google Scholar 

  75. Zeiher AM, Drexler H, Wollschlaeger H, et al. Coronary vasomotion in response to sympathetic stimulation in humans: the importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989;14:1181–90.

    Article  PubMed  CAS  Google Scholar 

  76. Zeiher AM, Drexler H, Wollschlaeger H, et al. Endothelial dysfunction of the coronary microvasculature is associated with impaired coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ornella Rimoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimoldi, O., Camici, P.G. PET measurement of the coronary flow reserve and microcirculatory function. Herz 24, 522–530 (1999). https://doi.org/10.1007/BF03044223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044223

Key Words

Schlüsselwörter

Navigation