Skip to main content
Log in

Molecular mechanisms of deoxynivalenol resistance in the yeastSaccharomyces cerevisiae

  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

The production of trichothecene toxins is a suspected virulence mechanism of several plant pathogenic fungi. This hypothesis has been confirmed forGibberella zeae (Fusarium graminearum) by gene disruption experiments, suggesting in turn, that resistance against the fungal toxin is a relevant component ofFusarium resistance of the host plant. Our goal is therefore to identify molecular mechanisms of trichothecene resistance. Using yeast as a model system we have found the following resistance mechanisms and genes: a) reduced uptake of deoxynivalenol (PDR5), b) toxin modification and reduction of toxicity (AYT1), and c) formation of a resistant toxin target (RPL3). Homologous plant genes exist and are attractive candidates forFusarium resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzi E, Goffeau A (1995) Yeast multidrug resistance: the PDR network. J. Bioenerg. Biomembr. 27: 71–76.

    Article  CAS  PubMed  Google Scholar 

  2. Cundliffe E, Davies, JE (1977) Inhibition of initiation, elongation and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob. Agents Chemother. 11: 491–499.

    Article  CAS  Google Scholar 

  3. Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat. Genet. 15: 137–145.

    Article  CAS  PubMed  Google Scholar 

  4. Desjardins AE, Proctor RH, Bai G, McCormic SP, Shaner G, Buechely G, Hohn TM (1996) Reduced virulence of trichothecene antibiotic-nonproducing mutants of Gibberella zeae in wheat field tests. Mol. Plant Microbe Interact. 9: 775–781.

    Article  CAS  Google Scholar 

  5. Fried HM, Warner JR (1981) Cloning of a yeast gene for trichodermin resistance and ribosomal protein L3. Proc. Natl. Acad. Sci. USA 78: 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grove JF (1988) Non-macrocyclic trichothecenes. Nat. Prod. Rep. 5: 187–209.

    Article  CAS  PubMed  Google Scholar 

  7. Grove JF (1993) Macrocyclic trichothecenes. Nat. Prod. Rep. 10: 429–454.

    Article  CAS  Google Scholar 

  8. Grove JF (1996) Non-macrocyclic trichothecenes, part 2. In: Prog. Chem. Org. Nat. Prod. 69: 1–70. (Herz W, Kirby G, Moore R, Steglich W, Tamm C, eds.), Springer Verlag, Wien.

    Google Scholar 

  9. Güldner U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucl. Acids Res. 24: 2519–2524.

    Article  Google Scholar 

  10. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods Enzymol. 194.

  11. Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I (1998) Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. J. Biol. Chem. 273: 1654–1661.

    Article  CAS  PubMed  Google Scholar 

  12. Mesterházy A. (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breeding 114: 377–386.

    Article  Google Scholar 

  13. Miller JD, Ewen MA (1998): Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars Frontana and Casavant. Nat. Tox. 5: 234–237.

    Article  Google Scholar 

  14. Proctor RH, Hohn TM, McCormic SP (1995) Reduced virulence of Gibberella zea caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8: 593–604.

    Article  CAS  PubMed  Google Scholar 

  15. Schuster M, Lepschy J, Biber A, Engelhard G, Wallnöfer PR (1987) Production of mycotoxins by Fusarium species isolated in Germany. Z. Lebensm. Unters. Forsch. 185: 477–480.

    Article  CAS  PubMed  Google Scholar 

  16. Sikorsky RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, G., Mitterbauer, R., Raditschnig, A. et al. Molecular mechanisms of deoxynivalenol resistance in the yeastSaccharomyces cerevisiae . Mycotox Res 17 (Suppl 1), 19–23 (2001). https://doi.org/10.1007/BF03036704

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036704

Keywords

Navigation