Skip to main content
Log in

The neuroprotectant properties of glutamate antagonists and antiglutamatergic drugs

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In the slowly progressive neurodegenerative disorders like Parkinson’s disease and Alzheimer’s disease very different neuronal populations undergo degenerative processes, although, the cascades of cellular events leading to death are supposed to be similar. We suggest that the complex pattern of degeneration in Parkinson’s disease depends on two processes, a ‘primary neurodegeneration’ that takes place ir the striato-nigral dopamine neurons and a ‘secondary degeneration’, occurring in distant structures of the basal ganglia network.

For the purpose of explaining the regionally different expression of ‘primary neurodegeneration’ in different diseases, we postulate that the origin of neurodegeneration is associated with the local release of a neurotransmitter. For Parkinson’s disease this would mean that the metabolism of dopamine in the striatum, nucleus accumbens and presumably the pedunculopontine tegmental nucleus, together with one or more pathological factors contribute to the initial neurodegeneration. There are recent studies indicating that a transneuronal retrograde degeneration of the substantia nigra pars compacta neurons might be induced by a loss of function of dopaminergic synapses in the striatum. We have recently established an animal model of retrograde striato-nigral degeneration, where the assessment of markers for cellular stress is possible.

In Parkinson’s disease, several structures distal from the substantia nigra pars compacta undergo neuropathological changes, characterizing the ‘secondary neurodegeneration’. Our recent studies provide experimental evidence for a chronic cellular stress in these structures because of a relative or absolute glutamatergic overactivity due to the initial loss of dopaminergic innervation. Thus, a loss of dopamine transforms the basal ganglia to a ‘destructive network’. Both processes, the ‘primary’ and ‘secondary neurodegeneration’, affecting each other, characterize the progress of chronic neurodegeneration. From this point of view, we would further like to develop strategies for symptomatic amendment. Excitatory amino acids seem to be involved not only in the secondary processes of neurodegeneration, but also in initiation of the ‘primary degeneration’ of the substantia nigra pars compacta. Therefore, a reduction of glutamatergic overactivity constitutes a promising neuroprotective strategy. Especially the new antagonists of the NMDA-receptors with high affinity to the NR2B subunit of the receptor are in focus of our interest, since they reveal a favourable profile of side effects, therefore providing a promising tool for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-APV:

2-amino-phosphonovaleric acid

3-NP:

3-nitropropionic acid

4C3HPG:

(S)-4-carboxy-3-hydroxy-phenylglycine

ADCI:

(±)-5-aminocarbonyl-10,ll-dihydro-5H-dibenzo[a.b]cyclohepten-5,10-imine

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CGP 37849:

(e)-2-amino-4-methyl-5-phosphono-3-pentanoic acid

CGP 39551:

(e)-2-amino-4-methyl-5-phosphono-3-pentanoic acid ethylester

CNQX:

6-cyano-7-nitro-quinoxaline-2,3-dione

CPP:

3-(2-carboxypiperazyl)propylphosphonic acid

CPPene:

SDZ EAA 494 (E)-4-(3-phosphonoprop-2-enyl)-piperzine-2-carboxylic acid

GYKI 52466:

1-(4′amino-phenyl)-4-methyl-7,8-methylen-dioxy-5H-2,3-benzodiazepine

L-CCG I:

(2S,1′ S,2′S)-carboxycyclopropylglycine

LY354740:

(+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate

MPP+ :

1-methyl-4-phenylpyridinium ion

MPTP:

1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine

NBQX:

2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)-quinoxaline

NMDA:

N-methyl-Daspartate

PPG:

(R,S)-4-phosphonophenylglycine

References

  • Adams, S.L., Foldes, R.L. and Kamboj, R.K. (1995) Human N-methyl-D-aspartate receptor modulatory subunit hNR3: cloning and sequencing of the cDNA and primary structure of the protein.Biochim. Biophys. Ada 1260, 105–108.

    Google Scholar 

  • Albin, R.L., Young, A.B. and Penney, J.B. (1989) The functional anatomy of basal ganglia disorders.Trends Neurosci. 12, 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Allsopp, T.E. (1998) Ageing brains and ebbing synapses.Trends Neurosci. 21, 503–504.

    Article  PubMed  CAS  Google Scholar 

  • Altagracia, M, Rojas, P., Kravzov, J. and Rios, C. (1993) Amantadine enhances dopamine and serotonin turnover in the MPTP model of Parkinson’s disease.Proc. West. Pharmacol. Soc. 36, 289–291.

    PubMed  CAS  Google Scholar 

  • Anderson, A.J., Su, J.H. and Cotman, C.W. (1996) DNA damageandapoptosis in Alzheimer’sdisease:colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay.J. Neurosci. 16, 1710–1719.

    PubMed  CAS  Google Scholar 

  • Anglade, P., Vyas, S., Hirsch, E.C. and Agid, Y. (1997a) Apoptosis in dopaminergic neurons of the human substentia nigra during normal aging.Histol. Histopathol. 12, 603–610.

    PubMed  CAS  Google Scholar 

  • Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.-T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C. and Agid, Y. (1997b) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease.Histol. Histopathol. 12, 25–31.

    PubMed  CAS  Google Scholar 

  • Ankarcrona, M., Dypbukt, J.M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S.A. and Nicotera, P. (1995) Glutamate- induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function.Neuron 15, 961–973.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T., Kogure, K. and Nishioka, K. (1990) Comparative neuroprotective effects of pentobarbital, vinpocetine, flunarizine and ifenprodil on ischemic neuronal damage in the gerbil hippocampus. Res.Exp. Med. Berl. 190, 19–23.

    CAS  Google Scholar 

  • Attwell, P.J.E., Kent, N.S., Jane, D.E., Croucher, M.J. and Bradford, H.E (1999) Anticonvulsant and glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,2′R;3′R)-2- (S,2′R;3 ′;R)-2-(2′,3′-dicarboxycyclopropyDglycine (DCG- IV).Brain Res. 805, 138–143.

    Article  Google Scholar 

  • Battaglia, G., Bruno, V, Ngomba, R.T., DiGrezia, R., Copani, A. and Nicoletti, F. (1998) Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death.Eur. J. Pharmacol. 356, 271–274.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F. (1992) Mechanisms of excitotoxicity in neurologic diseases.FASEB J. 6, 3338–3344.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R. and Hyman, B.T. (1993a) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid.J. Neurosci. 13, 4181–4192.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Hyman, B.T. and Koroshetz, W. (1993b) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?Trends Neurosci. 16, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Benazzouz, A., Boraud, T., Dubedat, P., Boireau, A., Stutzmann, J.M. and Gross, C. (1995) Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study.Eur.J. Pharmacol. 284, 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Bensimon, G., Lacomblez, L. and Meininger, V. (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis: ALS/Riluzole Study Group.N. Engl. J. Med. 330, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Blanchet, P.J., Konitsiotis, S. and Chase, T.N. (1998) Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys.Mov. Disord. 13, 798–802.

    Article  PubMed  CAS  Google Scholar 

  • Blandini, F. and Greenamyre, J.T. (1999) Protective and symptomatic strategies for therapy of Parkinson’s disease.Drugs Tod. 35, 473–483.

    CAS  Google Scholar 

  • Block, F., Pergande, G. and Schwarz, M. (1994) Flupirtine protects against ischaemic retinal dysfunction in rats.Neuroreport 5, 2630–2632.

    PubMed  CAS  Google Scholar 

  • Block, F., Pergande, G. and Schwarz, M. (1997) Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats.Brain Res. 754, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Boireau, A., Dubedat, P., Bordier, F., Peny, C, Miquet, J.M., Durand, G., Meunier, M. and Doble, A. (1994a) Riluzole and experimental parkinsonism: antagonism of MPTP-induced decrease in central dopamine levels in mice.Neuroreport 5, 2657–2660.

    PubMed  CAS  Google Scholar 

  • Boireau, A., Miquet, J.M., Dubedat, P., Meunier, M. and Doble, A. (1994b) Riluzole and experimental parkinsonism: partial antagonism of MPP(+)-induced increase in striatal extracellular dopamine in ratsin vivo.Neuroreport 5, 2157–2160.

    PubMed  CAS  Google Scholar 

  • Bond, A., O’Neill, M.J., Hicks, CA., Monn, J.A. and Lodge, D. (1998) Neuroprotective effects of a systemically active Group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischaemia.Neuroreport 9, 1191–1193.

    Article  PubMed  CAS  Google Scholar 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S.A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures.Proc. Natl. Acad. Sci. USA 92, 7162–7166.

    Article  PubMed  CAS  Google Scholar 

  • Bordi, F. and Ugolini, A. (1999) Group I metabotropic glutamate receptors: implications for brain diseases.Prog. Neurobiol. 59, 55–79.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H. and Braak, E. (1995) Staging of Alzheimer’s disease- related neurofibrillary changes.Neurobiol. Aging 16, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., Braak, E., Yilmazer, D., de Vos, R.A.I., Jansen, E.N.H. and Bohl, J. (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s disease.J. Neural Transm. 103, 455–490.

    Article  PubMed  CAS  Google Scholar 

  • Brouillet, E. and Beal, M.F. (1993) NMDA antagonists partially protect against MPTP induced neurotoxicity in mice.Neuroreport 4, 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Brouillet, E., Condé, F., Beal, M.F. and Hantraye, P. (1999) Replicating Huntington’s disease phenotype in experimental animals.Prog. Neurobiol. 59, 427–468.

    Article  PubMed  CAS  Google Scholar 

  • Brouillet, E. and Hantraye, P. (1995) Effects of chronic MPTP and 3-nitropropionic acid in nonhuman primates.Curr. Opin. Neurol. 8, 469–473.

    Article  PubMed  CAS  Google Scholar 

  • Browne, S.E., Bowling, A.C., MacGarvey, U., Baik, M.J., Berger, S.C., Muqit, M.M., Bird, E.D. and Beal, M.F. (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia.Ann. Neurol. 41, 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Bruno, V., Battaglia, G., Casabona, G., Copani, A., Caciagli, F. and Nicoletti, F. (1998a) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-ß.J. Neurosci. 18, 9594–9600.

    PubMed  CAS  Google Scholar 

  • Bruno, V., Battaglia, G., Copani, A., Casabona, G., Storto, M., Gerevini, V.D., Ngomba, R. and Nicoletti, F. (1998b) Metabotropic glutamate receptors and neurodegeneration.Glutamate Synapse as a Therapeutical Target Molecular Organization and Pathology of the Glutamate Synapse 116, 209–221.

    CAS  Google Scholar 

  • Bruno, V, Battaglia, G., Kingston, A., O’Neill, M.J., Catania, M.V., Di Grezia, R. and Nicoletti, F. (1999) Neuroprotective activity of the potent and selective mGlula metabotropic glutamate receptor antagonist, (+)-2- methyl-4 caroxyphenylglycine (LY367385): comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlula and mGlu5 receptors.Neuropharmacology 38, 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Butterworth, N.J., Williams, L., Bullock, J.Y., Love, D.R., Faull, R.L. and Dragunow, M. (1998) Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington’s disease striatum.Neuroscience 87, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, C.B., Holloway, V, Brotchie, J.M. and Mitchell, I.J. (1995) Neurochemical and behavioural investigations of the NMDA receptor-associated glycine site in the rat striatum: functional implications for treatment of parkinsonian symptoms.Psychopharmacology Berl. 119, 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C, Benavides, J., Legendre, P., Vincent, J.D., Noel, F., Thuret, E, Lloyd, K.G., Arbilla, S., Zivkovic, B. and MacKenzie, E.T. (1988) Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. II. Evidence for N-methyl-D- aspartate receptor antagonist properties.J. Pharmacol. Exp. Therap. 247, 1222–1232.

    CAS  Google Scholar 

  • Cassarino, D.S. and Bennett Jr., J.P. (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration.Brain Res. Rev. 19, 1–25.

    Article  Google Scholar 

  • Castro-Alamancos, M.A. and Borrell, J. (1993) Motor activity induced by disinhibition of the primary motor cortex of the rat is blocked by a non-NMDA glutamate receptor antagonist.Neurosci. Lett. 150, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Cebers, G., Cebere, A. and Liljequist, S. (1998) Metabolic inhibition potentiates AMPA-induced Ca2+ fluxes and neurotoxicity in rat cerebellar granule cells.Brain Res. 779, 194–204.

    Article  PubMed  CAS  Google Scholar 

  • Cebers, G., Zhivotovsky, B., Ankarcrona, M. and Liljequist, S. (1997) AMPA neurotoxicity in cultured cerebellar granule neurons: mode of cell death.Brain Res. Bull. 43, 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Chan, P., Di Monte, D.A., Langsten, J.W. and Janson, A.M. (1997) (+)MK-801 does not prevent MPTP-induced loss of nigral neurons in mice.J. Pharmacol. Exp. Therap. 280, 439–446.

    CAS  Google Scholar 

  • Chen, H.S., Pellegrini, J.W., Aggarwal, S.K., Lei, S.Z., Warach, S., Jensen, F.E. and Lipton, S.A. (1992) Open- channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity.J. Neurosci. 12, 4427–4436.

    PubMed  CAS  Google Scholar 

  • Chenard, B.L. and Menniti, F.S. (1999) Antagonists selective for NMDA receptors containing the NR2B subunit.Curr. Pharmac. Des. 5, 381–404.

    CAS  Google Scholar 

  • Choi, D.W. (1987) Ionic dependence of glutamate neurotoxicity.J. Neurosci. 7, 369–379.

    PubMed  CAS  Google Scholar 

  • Choi, D.W. (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischmic damage.Trends Neurosci. 11, 465–469.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G.L. and Bliss, T.V.P. (1987) NMDA receptors — their role in long-term potentiation.Trends Neurosci. 10, 288–293.

    Article  CAS  Google Scholar 

  • Collingridge, G.L. and Lester, R.A. (1989) Excitatory amino acid receptors in the vertebrate central nervous system.Pharmacol. Rev. 41, 143–210.

    PubMed  CAS  Google Scholar 

  • Collingridge, G.L. and Singer, W. (1990) Excitatory amino acid receptors and synaptic plasticity.Trends Pharmacol. Set. 11, 290–296.

    Article  CAS  Google Scholar 

  • Cotman, C.W., Monaghan, D.T., Ottersen, O.P. and Storm-Mathisen, J. (1987) Anatomical organization of excitatory amino acid receptors and their pathways.Trends Neurosci. 10, 273–280.

    Article  CAS  Google Scholar 

  • Coyle, J.T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders.Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  • Crossman, A.R., Peggs, D., Boyce, S., Luquin, M.R. and Sambrook, M.A. (1989) Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey.Neuropharmacology 28, 1271–1273.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R., Phillis, J.W. and Watkins, J.C. (1959) Chemical excitation of spinal neurons.Nature 183, 611–612.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C. (1960) The excitation and depression of spinal neurons by structurally related amino acids.J. Neurochem. 6, 117–141.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Watkins, J.C. (1963) Acidic amino acids with strong excitatory actions on mammalian neurons.J. Physiol. 66, 1–14.

    Google Scholar 

  • Damier, P., Hirsch, E.C., Agid, Y. and Graybiel, A.M. (1999a) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry.Brain 122,1421–1436.

    Article  PubMed  Google Scholar 

  • Damier, P., Hirsch, E.C., Agid, Y. and Graybiel, A.M. (1999b) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease.Brain 122, 1437–1448.

    Article  PubMed  Google Scholar 

  • Danysz, W., Parsons, CG., Kornhuber, J. and Schmidt, W.J. (1997) Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents — preclinical studies.Neurosci. Biobehav. Rev. 21, 455–468.

    Article  PubMed  CAS  Google Scholar 

  • Das, S., Sasaki, Y.E, Rothe, T., Premkumar, L.S., Takasu, M., Crandall, J.E., Dikkes, P., Conner, D.A., Rayudu, P.V., Cheung, W., Chen, H.S., Lipton, S.A. and Nakanishi, N. (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A.Nature 393, 377–381.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte, S.M., Sohn, Y.K., Ganju, N. and Wands, J.R. (1998) P53- and CD95-associated apoptosis in neurodegenerative diseases.Lab. Invest. 78, 401–411.

    PubMed  Google Scholar 

  • Dexter, D.T., Carter, C.J., Wells, ER., Javoy-Agid, F., Agid, Y, Lees, A., Jenner, P. and Marsden, CD. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease.J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, R., White, R.F., Myers, R.H., Mastromauro, C., Koroshetz, W.J., Butters, N., Rothstein, D.M., Moss, M.B. and Vasterling, J. (1992) Evidence of presymptomatic cognitive decline in Huntington’s disease.J. Clin. Exp. Neurol. 14, 961–975.

    Article  CAS  Google Scholar 

  • Doble, A. (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy.Pharmacol. Ther. 81, 163–221.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M., Faull, R.L., Lawlor, P., Beilharz, E.J., Singleton, K., Walker, E.B. and Mee, E. (1995)In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes.Neuroreport 6, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M. and Preston, K. (1995) The role of inducible transcription factors in apoptotic nerve cell death.Brain Res. Rev. 21, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B. and Björklund, A. (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease.Nature 399 (Suppl.), A33-A39.

    Google Scholar 

  • Favaron, M., Manev, H., Siman, R., Bertolino, M., Szekely, A.M., DeErausquin, G., Guidotti, A. and Costa, E. (1990) Down-regulation of protein kinase C protects cerebellar gra nule neurons in primary culture from glutamate-induced neuronal death.Proc. Natl. Acad. Sci. USA 87, 1983–1987.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Browne, S.E., Shinobu, L.A., Bowling, A.C., Baik, M.J., MacGarvey, U., Kowall, N.W, Brown-RH, J. and Beal, M.F. (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis.J. Neurochem. 69, 2064–2074.

    PubMed  CAS  Google Scholar 

  • Fix, A.S., Horn, J.W., Wightman, K.A., Johnson, CA., Long, G.G., Starts, R.W., Farber, N., Wozniak, D.F. and Olney, J.W. (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartat (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex.Exp. Neurol. 123, 204–215.

    Article  PubMed  CAS  Google Scholar 

  • Friedel, H.A. and Fitton, A. (1993) Flupirtine. A review of its pharmacological properties, and therapeutic efficacy in pain states.Drugs 45, 548–569.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini, E, Bruno, V., Battaglia, G., Lukic, S., Leonhardt, T., Inderbitzin, W., Laurie, D., Sommer, B., Varney, M.A., Hess, S.D., Johnson, E.C., Kuhn, R., Urwyler, S., Sauer, D., Portet, C, Schmutz, M., Nicoletti, F. and Flor, P.J. (1999) (R,S)-4-phosphonophenylglycine, a potent and selective groupIII metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotectivein vivo.J. Pharmacol. Exp. Therap. 289, 1678–1687.

    CAS  Google Scholar 

  • Gass, P. and Herdegen, T. (1995) Neuronal expression of AP-1 proteins in excitotoxic-neurodegenerative disorders and following nerve fiber lesion.Prog. Neurobiol. 47, 257–290.

    Article  CAS  Google Scholar 

  • Gervais, FG., Xu, D.G., Robertson, G.S., Vaillancourt, J.P., Zhu, Y.X., Huang, J.Q., LeBlanc, A., Smith, D., Rigby, M., Shearman, M.S., Clarke, F.E., Zheng, H., Van-Der-Ploeg, L.H.T., Ruffolo, S.C., Thornberry, N.A., Xanthoudakis, S., Zamboni, R.J., Roy, S. and Nicholson, D.W. (1999) Involve- ment of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation.Cell 97, 395–406.

    Article  PubMed  CAS  Google Scholar 

  • Gortelmeyer, R. and Erbler, H. (1992) Memantine in the treatment of mild to moderate dementia syndrome. A doubleblind placebo-controlled study.Arzneimittelforschung. 42, 904–913.

    PubMed  CAS  Google Scholar 

  • Gotti, B., Duverger, D., Bertin, J., Carter, C, Dupont, R., Frost, J., Gaudilliere, B., MacKenzie, E.T., Rousseau, J. and Scatton, B. (1988) Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia.J. Pharmacol. Exp. Therap. 247, 1211–1221.

    CAS  Google Scholar 

  • Gould, D.H. and Gustine, D.L. (1982) Basal ganglia degeneration, myelin alterations, and enzyme inhibition induced in mice by the plant toxin 3-nitropropionic acid.Neuropathol. Appl. Neurobiol. 8, 377–393.

    Article  PubMed  CAS  Google Scholar 

  • Greene, J.G. and Greenamyre, J.T. (1995a) Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate.J. Neurochem. 64, 430–436.

    PubMed  CAS  Google Scholar 

  • Greene, J.G. and Greenamyre, J.T. (1995b) Exacerbation of NMDA, AMPA and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate.J. Neurochem. 64, 2332–2338.

    Article  PubMed  CAS  Google Scholar 

  • Gu, M., Gash, M.T., Mann, V.M., Javoy, A.F., Cooper, J.M. and Schapira, A.H. (1996) Mitochondrial defect in Huntington’s disease caudate nucleus.Ann. Neurol. 39, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Guyot, M.C., Palfi, S., Stutzmann, J.M., Maziere, M., Hantraye, P. and Brouillet, E. (1997) Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats.Neuroscience 81, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Helton, D.R., Tizzano, J.P., Monn, J.A., Schoepp, D.D. and Kallman, M.J. (1998) Anxiolytic and side-effect profile of LY354740: a potent, highly selective, orally active agonist for group II metabotropic glutamate receptors.J. Pharmacol. Exp.Themp. 284, 651–660.

    CAS  Google Scholar 

  • Henneberry, R.C., Novelli, A., Cox, J.A. and Lysko, P.G. (1989a) Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons. A hypothesis for cell death in aging and disease.Ann. NY Acad. Sci. 568, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Henneberry, R.C., Novelli, A., Vigano, M.A., Reilly, J.A., Cox, J.A. and Lysko, P.G. (1989b) Energy-related neurotoxicity at the NMDA receptor: a possible role in Alzheimer’s disease and related disorders.Prog. Clin. Biol. Res. 317, 143–156.

    PubMed  CAS  Google Scholar 

  • Henrich-Noack, P., Hatton, CD. and Reymann, K.G. (1998) The mGlu receptor ligand (S)-4C3HPG protects neurons after global ischaemia in gerbils.Neuroreport 9, 985–988.

    Article  PubMed  CAS  Google Scholar 

  • Herdegen, T. and Leah, J.D. (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ ATF proteins.Brain Res. Rev. 28, 370–490.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E.C., Graybiel, A.M., Duyckaerts, C. and Javoy-Agid, F. (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy.Proc. Natl. Acad. Sci. USA 84, 5976–5980.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E.C., Mouatt, A., Thomasset, M., Javoy-Agid, F., Agid, Y. and Graybiel, A.M. (1992) Expression of Calbindin D28K-like immunoreactivity in catecholaminergic cell groups of the human midbrain: normal distribution and distribution in Parkinson’s disease.Neurodegeneration 1, 83–93.

    Google Scholar 

  • Hoogeveen, A.T., Willemsen, R., Meyer, N., de Rooij, K.E., Roos, R.A., van-Ommen, G.J. and Galjaard, H. (1993) Characterization and localization of the Huntington disease gene product.Hum. Mol. Genet. 2, 2069–2073.

    Article  PubMed  CAS  Google Scholar 

  • Hölscher, C, Gigg, J. and O’Mara, S.M. (1999) Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity.Neurosci. Biobehav. Rev. 23, 399–410.

    Article  PubMed  Google Scholar 

  • Iadecola, C. (1997) Bright and dark sides of nitric oxide in ischémie brain injury.Trends Neurosci. 20, 132–139.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou, C, Bosch, F., Miksa, M., Bittigau, P., Vockler, J., Dikranian, K., Tenkova, T.I., Stefovska, V., Turski, L. and Olney, J.W. (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain.Science 283, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru, M.J., Ikonomidou, C, Tenkova, T.I., Der, T.C., Dikranian, K., Sesma, M.A. and Olney, J.W. (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain.J. Comp. Neurol. 408, 461–476.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger, K.A. (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway.Mol. Chem. Neuropathol. 14, 153–197.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P. and Olanow, C.W. (1996) Oxidative stress and the pathogenesis of Parkinson’s disease.Neurology 47 (Suppl.), S161-S170.

    PubMed  CAS  Google Scholar 

  • Jones-Humble, S.A., Morgan, P.F. and Cooper, B.R. (1994) The novel anticonvulsant lamotrigine prevents dopamine depletion in C57 black mice in the MPTP animal model of Parkinson’s disease.Life Sci. 54, 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Kew, J.N. and Kemp, J.A. (1998) An allosteric interaction between the NMDA receptor polyamine and ifenprodil sites in rat cultured cortical neurones.J. Physiol. (Lond.)512, 17–28.

    Article  CAS  Google Scholar 

  • Kieburtz, K., Feigin, A., McDermott, M., Como, P., Abwender, D., Zimmerman, C, Hickey, C, Orme, C, Claude, K., Sotack, J., Greenamyre, J.T., Dunn, C. and Shoulson, I. (1996) A controlled trial of remacemide hydrochloride in Huntington’s disease.Mov. Disord. 11, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Kiedrowski, L., Brooker, G., Costa, E. and Wroblewski, J.T. (1994) Glutamate impairs neuronal calcium extrusion while reducing sodium gradient.Neuron 12, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury, A.E., Marsden, C.A. and Foster, O.J.F. (1999) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect?Mov. Disord. 13, 877–884.

    Article  Google Scholar 

  • Kingston, A.E., O’Neill, M.J., Lam, A., Bales, K.R., Monn, J.A. and Schoepp, D.D. (1999) Neuroprotection by metabotropic glutamate receptor agonists: LY354740, LY379268 and LY389795.Eur. J. Pharmacol. 377, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Klockgether, T. and Turski, L. (1990) NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats.Ann. Neurol. 28, 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Koch, R.A. and Barish, M.E. (1994) Perturbation of intracellular calcium and hydrogen ion regulation in cultured mouse hippocampal neurons by reduction of the sodium ion concentration gradient.J. Neurosci. 14, 2585–2593.

    PubMed  CAS  Google Scholar 

  • Konieczny, J., Ossowka, K., Wolfarth, S. and Pilc, A. (1998) LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats.Naunyn Schmiedeberg’s Arch. Pharmacol. 358, 500–502.

    Article  CAS  Google Scholar 

  • Kornhuber, J., Jellinger, K.A., Wiltfang, J., Leblhuber, F. and Riederer, P. (1999) The N-methyl-D-aspartate receptor channel blocker amantadine does not cause histo- pathological alterations in human brain tissue.Acta Neuropathol. 98, 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer, B.D. (1994a) Felbamate, an anti-convulsive drug, has anti-parkinsonian potential in rats.Neurosci. Lett. 179, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer, B.D., Winterscheid, B., Danysz, W. and Schmidt, W.J. (1994b) Glycine site antagonists abolish dopamine D2 but not Dl receptor mediated catalepsy in rats.J. Neural Transm. Gen. Sect. 95, 123–136.

    Article  PubMed  CAS  Google Scholar 

  • Kronthaler, U. and Schmidt, W.J. (1998) The mGluRs group II agonist (2S,3S,4S)-alpha-carboxycyclopropyl-glycine induces catalepsy in the rat, which is pronouncedly antagonised by dizocilpine and D,L-amphetamine.Neurosci. Lett. 253, 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Kupsch, A., Löschmann, P.-A., Sauer, H., Arnold, G., Renner, P., Pufal, D., Burg, M., Wachtel, H., ten-Bruggencate, G. and Oertel, W.H. (1992) Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice.Brain Res. 592, 74–83.

    Article  PubMed  CAS  Google Scholar 

  • Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P. and Meininger, V. (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II.Lancet 347, 1425–1431.

    PubMed  CAS  Google Scholar 

  • Lam, A.G.M., Soriano, M.A., Monn, J.A., Schoepp, D.D., Lodge, D. and McCulloch, J. (1998) Effects of the selective metabotropic glutamate agonist LY354740 in a rat model of permanent ischemia.Neurosci. Lett. 254, 121–123.

    Article  PubMed  CAS  Google Scholar 

  • Lange, K.W, Kornhuber, J. and Riederer, P. (1997) Dopamine/ glutamate interactions in Parkinson’s disease.Neurosci. Biobehav. Rev. 21, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Lange, K.W., Löschmann, P.-A., Sofie, E., Burg, M., Horowski, R., Kalveram, K.T., Wachtel, H. and Riederer, P. (1993) The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates.Naunyn Schmiedebergs Arch. Pharmacol. 348, 586–592.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.-M., Zipfel, G.J. and Choi, D.W. (1999) The changing landscape of ischaemic brain injury mechanisms.Nature 399 (Suppl.), A7-A14.

    PubMed  CAS  Google Scholar 

  • Legendre, P. and Westbrook, G.L. (1991) Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism.Mol. Pharmacol. 40, 289–298.

    PubMed  CAS  Google Scholar 

  • Leist, M., Volbracht, C, Fava, E. and Nicotera, P. (1998) l-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis.Mol. Pharmacol. 54, 789–801.

    PubMed  CAS  Google Scholar 

  • Lipton, S.A. and Nicotera, P. (1998) Calcium, free radicals and excitotoxins in neuronal apoptosis.Cell Calcium 23, 165–171.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, D.R. and Newhouse, J.P. (1957) The toxic activity of sodium-L-glutamate on the inner layers of the retina.Arch. Ophthalmol. 58, 193–201.

    CAS  Google Scholar 

  • Lucassen, P.J., Chung, W.C.J., Kamphorts, W. and Swaab, D.F. (1997) DNA damage distribution in the human brain as shown byin situ end labeling: area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology.J. Neuropathol. Exp. Neurol. 56, 887–900.

    Article  PubMed  CAS  Google Scholar 

  • Ludolph, A.C., Langen, K.J., Regard, M., Herzog, H., Kemper, B., Kuwert, T., Bottger, I.G. and Feinendegen, L. (1992a) Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study.Acta Neurol. Scand. 85, 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Ludolph, A.C., Seelig, M., Ludolph, A.G., Sabri, M.I. and Spencer, P.S. (1992b) ATP deficits and neuronal degeneration induced by 3-nitropropionic acid.Ann. NY Acad. Sci. 648, 300–302.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C. and Nicoll, R.A. (1999) Long-term potentiation — a decade of progress?Science 285, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  • Mann, V.M., Cooper, J.M., Krige, D., Daniel, S.E., Schapira, A.H. and Marsden, CD. (1992) Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease.Brain 115, 333–342.

    Article  PubMed  Google Scholar 

  • Martin, L.J. (1999) Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism.J. Neuropathol. Exp. Neurol. 58, 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I. and Rydel, R.E. (1992) Beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity.J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P., Guo, Z.H. and Geiger, J.D. (1999) Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism.J. Neurochem. 73, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., Keller, J.N. and Begley, J.G. (1998) Evidence for synaptic apoptosis.Exp. Neurol. 153, 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, L.D., Jarrott, B. and Beart, P.M. (1993) 1251-ifenprodil: synthesis and characterization of binding to a polyamine- sensitive site in cerebral cortical membranes.J. Neurochem. 61, 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, E.K. (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging.Prog. Neurobiol. 54, 369–415.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J. and Carroll, C.B. (1997) Reversal of parkinsonian symptoms in primates by antagonism of excitatory amino acid transmission: potential mechanisms of action.Neurosci. Biobehav. Rev. 21, 469–475.

    Article  PubMed  CAS  Google Scholar 

  • Mott, D.D., Doherty, J.J., Zhang, S., Washburn, M.S., Fendley, M.J., Lyuboslavsky, P., Traynelis, S.F. and Dingledine, R. (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition.Nat. Neurosci. 1, 659–667.

    Article  PubMed  CAS  Google Scholar 

  • Müller, W.E.G., Dobmeyer, J.M., Dobmeyer, T.S., Pergande, G., Perovic, S., Leuck, J. and Rossol, R. (1997a) Flupirtine protects neuronal cells and lymphocytes against induced apoptosisin vitro: implications for treatment of AIDS patients.Cell Death Diff. 4, 51–58.

    Article  CAS  Google Scholar 

  • Müller, W.E.G., Romero, F.J., Perovic, S., Pergande, G. and Pialoglou, P. (1997b) Protection of flupirtine on ß -amyloid- induced apoptosis in neuronal cellsin vitro: prevention of amyloid-induced glutathione depletion.J. Neurochem. 68, 2371–2377.

    PubMed  Google Scholar 

  • Nash, J.E., Hill, M.P. and Brotchie J.M. (1999) Antiparkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat.Exp. Neurol. 155, 42–48.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Bruno, V., Copani, A., Casabona, G. and Knöpfel, T. (1996) Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders?Trends Neurosci. 19, 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Nicotera, P., Leist, M. and Manzo, L. (1999) Neuronal cell death: a demise with different shapes.Trends Pharmacol. Sci. 20, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Novelli, A., Reilly, J.A., Lysko, P.G. and Henneberry, R.C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced.Brain Res. 451, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W. (1969) Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate.Science 164, 719–721.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W. (1978) Neurotoxicity of excitatory amino acids. In: McGeer, E.G., Olney, J.W. and McGeer, P.L. (Eds.),Kainic Acid as a Tool in Neurobiology (New York: Raven Press), pp. 95–112.

    Google Scholar 

  • Olney, J.W. and Sharpe, L.G. (1969) Brain lesions in an infant rhesus monkey treated with monosodium glutamate.Science 166, 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., Wozniak, D.F. and Farber, N.B. (1997) Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies.Arch. Neurol. 54, 1234–1241.

    PubMed  CAS  Google Scholar 

  • Orrenius, S., McConkey, D.J., Bellomo, G. and Nicotera, P. (1989) Role of Ca2+ in toxic cell killing.Trends Pharmacol. Sci. 10, 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., Cazevieille, C, Pergande, G. and Wood, J.P.M. (1997) Induction of apoptosis in cultured human retinal pigment epithelial cells is counteracted by flupirtine.Invest. Ophthalmol. Vis. Sci. 38, 1390–1400.

    PubMed  CAS  Google Scholar 

  • Nash, M.S., Pergande, G., Block, F., Kosinski, C. and Schwarz, M. (1998) Flupirtine, a nonopioid centrally acting analgesic, acts as an NMDA antagonist.Gen. Pharmacol. 30, 255–263.

    Article  PubMed  Google Scholar 

  • Osborne, N.N., Schwarz, M. and Pergande, G. (1996) Protection of rabbit retina from ischemie injury by flupirtine.Invest. Ophthalmol. Vis. Sci. 37, 274–280.

    PubMed  CAS  Google Scholar 

  • Palfi, S., Riche, D., Brouillet, E., Guyot, M.C., Mary, V, Wahl, F., Peschanski, M., Stutzmann, J.M. and Hantraye, P. (1997) Riluzole reduces incidence of abnormal movements but not striatal cell death in a primate model of progressive striatal degeneration.Exp. Neurol. 146, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, CG., Danysz, W. and Quack, G. (1998) Glutamate in CNS disorders as a target for drug development: an update.Drug News Perspect. 11, 523–569.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, CG., Gruner, R., Rozental, J, Millar, J. and Lodge, D. (1993) Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (l-amino-3,5-dimethyladamantan).Neuropharmacology 32, 1337–1350.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, CG., Panchenko, V.A., Pinchenko, V.O., Tsyndrenko, A.Y. and Krishtal, O.A. (1996) Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine.Eur. J. Neuwsci. 8, 446–454.

    Article  CAS  Google Scholar 

  • Parsons, CG., Quack, G., Bresink, I., Baran, L., Przegalinski, E., Kostowski, W., Krzascik, P., Hartmann, S. and Danysz, W. (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonistsin vitro with anticonvulsive and motor impairment activityin vivo.Neuropharmacology 34, 1239–1258.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G. and Watson, C. (1997)The Rat Brain in Stereotaxic Coordinates (San Diego, CA: Academic Press).

    Google Scholar 

  • Pedersen, V. and Schmidt, W.J. (1998) Differential expression of immediate early genes in the basal ganglia of 6-OHDA lesioned rats. Eisner, N. and Wehner, R. (Eds.),New neuroethology on the move 1998, Proceedings of the 26th Göttingen Neurobiology Conference, Stuttgart, Thieme, Vol. 1, No. 64.

    Google Scholar 

  • Pellicciari, R. and Costantino, G. (1999) Metabotropic G- protein-coupled glutamate receptors as therapeutic targets.Curr. Opin. Chem. Biol. 3, 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Perovic, S., Pergande, G., Ushijima, H., Kelve, M., Forrest, J. and Müller, W.E.G. (1995) Flupirtine partially prevents neuronal injury induced by prion protein fragment and lead acetate.Neurodegeneration 4, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Perovic, S., Pialoglou, P., Schröder, H.C., Pergande, G. and Müller, W.E.G. (1996) Flupirtine increases the levels of glutathione and Bcl-2 in hNT (human Ntera/D1) neurons: mode of action of the drug-mediated anti-apoptotic effect.Eur. ]. Pharmacol. 317, 157–164.

    Article  CAS  Google Scholar 

  • Perovic, S., Schröder, H.C, Pergande, G., Ushijima, H. and Müller, W.E.G. (1997) Effect of flupirtine on Bcl-2 and glutathione level in neuronal cells treatedin vitro with the prion protein fragment (PrPl06-126).Exp. Neurol. 147, 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Pin, J.P. and Duvoisin, R. (1995) The metabotropic glutamate receptors: structure and functions.Neuropharmacology 34, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau, C, Hedreen, J.C, Price, D.L. and Koliatsos, V.E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models.J. Neurosci. 15, 3775–3787.

    PubMed  CAS  Google Scholar 

  • Robertson, H.A. (1992) Dopamine interactions: some implications for the treatment of Parkinson’s disease.Trends Neurosci. 15, 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, S.M. and Olney, J.W. (1987) Excitotoxicity and the NMDA receptor.Trends Neurosci. 10, 299–302.

    Article  CAS  Google Scholar 

  • Rothstein, J.D. (1995) Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis.Adv.Neurol. 68, 7–20.

    PubMed  CAS  Google Scholar 

  • Rupalla, K., Cao, W. and Krieglstein, J. (1995) Flupirtine protects neurons against excitotoxic or ischemic damage and inhibits the increase in cytosolic Ca2+ concentration.Eur. J. Pharmacol. 294, 469–473.

    Article  PubMed  CAS  Google Scholar 

  • Santiago, M., Venero, J.L., Machado, A. and Cano, J. (1992)In vivo protection of striatum from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.Brain Res. 586, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Carbente, M.D. and Massieu, L. (1999) Transient inhibition of glutamate uptakein vivo induces neuro degeneration when energy metabolism is impaired.J. Neurochem. 72, 129–138.

    Article  PubMed  Google Scholar 

  • Schapira, A.H., Holt, I.J., Sweeney, M., Harding, A.E., Jenner, P. and Marsden, CD. (1990) Mitochondrial DNA analysis in Parkinson’s disease.Mov. Disord. 5, 294–297.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W.J. (1994) Behavioural effects of NMDA-receptor antagonists.J. Neural Transm. 43 (Suppl.), 63–69.

    CAS  Google Scholar 

  • Schmidt, W.J. (1995) Balance of transmitter activities in the basal ganglia loops.J. Neural Transm. 46, 67–76.

    CAS  Google Scholar 

  • Schmidt, W.J. and Bubser, M. (1989) Anticataleptic effects of N-methyl-D-aspartate antagonist MK-801 in rats.Pharmacol. Biochem. Behav. 32, 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W.J., Bubser, M. and Hauber, W. (1992) Behavioral pharmacology of glutamate in the basal ganglia.J. Neural Transm. 38, 65–89.

    CAS  Google Scholar 

  • Schmidt, W.J. and Kretschmer, B.D. (1997) Behavioral pharmacology of glutamate receptors in the basal ganglia.Neurosci. Biobehav. Rev. 21, 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W.J., Schuster, G., Wacker, E. and Pergande, G. (1997) Antiparkinsonian and other motor effects of flupirtine alone and in combination with dopaminergic drugs.Eur. J. Pharmacol. 327, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W.J., Zadow, B., Kretschmer, B.D. and Hauber, W. (1991) Anticataleptic potencies of glutamate-antagonists.Amin. Acids 1, 225–237.

    Article  CAS  Google Scholar 

  • Schoemaker, H., Allen, J. and Langer, S.Z. (1990) Binding of [3H]ifenprodil, a novel NMDA antagonist, to a polyamine- sensitive site in the rat cerebral cortex.Eur. J. Pharmacol. 176, 249–250.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D.D. and Conn, P.J. (1993) Metabotropic glutamate receptors in brain function and pathology.Trends Pharmacol. Sci. 14, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, G., Schwarz, M., Block, F., Pergande, G. and Schmidt, W.J. (1998) Flupirtine:areviewofitsneuroprotective and behavioral properties.CNS Drug Rev. 4, 149–164.

    CAS  Google Scholar 

  • Schwarz, M., Block, F. and Pergande, G. (1994) N-methyl-D- aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats.Neuroreport 5, 1981–1984.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M., Nolden-Koch, M., Purr, J., Pergande, G. and Block, F. (1996) Antiparkinsonian effect of flupirtine in monoamine-depleted rats.J. Neural Transm. 103, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, F.R., Butman, M., Koistinaho, J., Aardalen, K., Nakki, R., Massa, S.M., Swanson, R.A. and Sagar, S.M. (1994) Phencyclidine induction of thehsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels.Neuroscience 62, 1079–1092.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, P.J. (1994) Excitotoxicity and motor neurone disease: a review of the evidence.J. Neurol. Sci. 124 (Suppl.), 6–13.

    Article  PubMed  Google Scholar 

  • Siman, R., Noszek, J.C and Kegerise, C. (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage.J. Neurosci. 9, 1579–1590.

    PubMed  CAS  Google Scholar 

  • Simonian, N.A., Getz, R.L., Leveque, J.C, Konradi, C. and Coyle, J.T. (1996) Kainic acid induces apoptosis in neurons.Neuroscience 75, 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek, F., Pin, J.P., Recasens, M., Bockaert, J. and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurones.Nature 317, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla, P.K., Zeevalk, G.D., Manzino, L., Giovanni, A. and Nicklas, W.J. (1992) MK-801 fails to protect against the dopaminergic neuropathology produced by systemic l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats.J. Neurochem. 58, 1979–1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, V., Schmidt, W.J. The neuroprotectant properties of glutamate antagonists and antiglutamatergic drugs. neurotox res 2, 179–203 (2000). https://doi.org/10.1007/BF03033793

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033793

Keywords

Navigation