Skip to main content
Log in

Anticataleptic potencies of glutamate-antagonists

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

The anticataleptic effects of non-competitive and competitive NMDA antagonists as well as those of an agonist at the allosteric glycine binding site of the NMDA receptor were tested in the catalepsy model. Some of these drugs were further tested in a reaction time task demanding rapid locomotor initiation. The results show that the non-competitive NMDA antagonists dizocilpine and memantine as well as the competitive antagonists CGP 39551, CGP 37849 and CPPene antagonized dopamine D2 receptor mediated catalepsy induced by haloperidol. D-cycloserine, a partial glycine agonist per se had no effects, but it enhanced the anticataleptic effects of dizocilpine when coadministered. However, the effects of CGP 37849 were abolished. Dopamine D1 receptor mediated catalepsy induced by SCH 23390 was antagonized by dizocilpine, memantine, CPPene, but not by CGP 37849. In the reaction time task dizocilpine, memantine and CGP 37849 were tested for their anti-akinetic and anti-bradykinetic potencies. All these compounds improved haloperidolinduced slowing of reaction time. However, they acted differentially on haloperidol-induced slowing of movement execution and decreased initial acceleration. Thus, antagonists at the NMDA receptor may have a therapeutic potential in the treatment of Parkinson's disease. Their potency can be manipulated specifically at the glycine binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amalric M, Koob GF (1987) J Neurosci 7/7: 2129–2134

    Google Scholar 

  2. Bormann J (1989) Eur J Pharmacol 166: 591–592

    Google Scholar 

  3. Carlsson M, Carlsson A (1990) Trends Neurosci 13/7:272–280

    Google Scholar 

  4. Clineschmidt BV, Martin GE, Bunting PR, Papp NL (1982) Drug Dev Res 2: 135–145

    Google Scholar 

  5. Danysz W, Wroblewski JT (1989) Neurosci Res Comm 5: 9–18

    Google Scholar 

  6. Elliott PJ, Close SP, Walsh DM, Hayes AG, Marriott AS (1990) J Neural Transm 2: 91–100

    Google Scholar 

  7. Hallett M (1990) Rev Neurol (Paris) 146/10: 585–590

    Google Scholar 

  8. Hauber W, Schmidt WJ (1989) J Neural Transm 78: 29–41

    Google Scholar 

  9. Hauber W (1990) Experientia 46: 1083–1088

    Google Scholar 

  10. Hauber W, Schmidt WJ (1990) Behav Brain Res 41: 161–166

    Google Scholar 

  11. Hölscher C, Schmidt WJ (1991) In: Elsner N, Penzlin H (eds) Synapse — Transmission modulation. Proceedings of the 19th Göttingen Neurobiology Conference, Göttingen 1991, Thieme, Stuttgart New York (Abstr 450)

    Google Scholar 

  12. Hood WF, Compton RP, Monhan JB (1989) Neurosci Lett 98: 91–95

    Google Scholar 

  13. Imperato A, Scrocco MG, Bacchi S, Angelucci L (1990a) Eur J Pharmacol 187: 555–556

    Google Scholar 

  14. Imperato A, Honore T, Jensen LH (1990b) Brain Res 530: 223–228

    Google Scholar 

  15. Johnson JW, Ascher P (1987) Nature 325: 529

    Google Scholar 

  16. Keseberg U, Bubser M, Schmidt WJ (1991) In: Elsner N, Penzlin H (eds) Synapse — Transmission modulation. Proceedings of the 19th Göttingen Neurobiology Conference, Göttingen 1991, Thieme, Stuttgart New York (Abstr 448)

    Google Scholar 

  17. Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P (1989) Eur J Pharmacol 166: 589–590

    Google Scholar 

  18. Liljequist S, Ossowska K, Grabowska-Andén M, Andén N-E (1991) Eur J Pharmacol 195: 55–61

    Google Scholar 

  19. Mehta AK, Ticku MK (1990) Life Sci 46: 37–42

    Google Scholar 

  20. Monaghan DT, Olverman HJ, Nguyen L, Watkins JC, Cotman CW (1988) Proc Natl Acad Sci USA 85: 9836

    Google Scholar 

  21. Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Nature 319: 774

    Google Scholar 

  22. Scheel-Krüger J (1983) In: Enna EJ (ed) Humana Press Clifton, pp 215–256

  23. Schmidt WJ (1986) Psychopharmacology 90: 123–130

    Google Scholar 

  24. Schmidt WJ, Bischoff C (1988) Psychopharmacology 96: 51

    Google Scholar 

  25. Schmidt WJ, Bury D (1988) Life Sci 43/6: 545–549

    Google Scholar 

  26. Schmidt WJ, Bubser M (1989) Pharmacol Biochem Behav 32: 621–623

    Google Scholar 

  27. Schmidt WJ, Bubser M, Hauber W (1990) Trends Neurosci 13/2: 46

    Google Scholar 

  28. Skjoldager P, Fowler SC (1988) Psychopharmacology 96: 21–28

    Google Scholar 

  29. Stelmach GE, Worringham CJ (1988) Neuropsychologia 26: 93–103

    Google Scholar 

  30. Tiedtke PI, Bischoff C, Schmidt WJ (1990) J Neural Transm 81: 173–182

    Google Scholar 

  31. Watson GB, Bolanowski MA, Boganoff MP, Deppeler CL, Lanthorn TH (1990) Brain Res 510: 158–160

    Google Scholar 

  32. Wierzbicka MM, Wiegner AW, Logigian EL, Young RR (1991) J Neurol Neurosurg Psychiatry 54: 210–216

    Google Scholar 

  33. Wong EHF, Knight AR, Ransom R (1987) Eur J Pharmacol 142: 487–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W.J., Zadow, B., Kretschmer, B.D. et al. Anticataleptic potencies of glutamate-antagonists. Amino Acids 1, 225–237 (1991). https://doi.org/10.1007/BF00806920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806920

Keywords

Navigation