Skip to main content

Advertisement

Log in

Neurotoxicity of organomercurial compounds

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Mercury is a ubiquitous contaminant, and a range of chemical species is generated by human activity and natural environmental change. Elemental mercury and its inorganic and organic compounds have different toxic properties, but all them are considered hazardous in human exposure. In an equimolecular exposure basis organomercurials with a short aliphatic chain are the most harmful compounds and they may cause irreversible damage to the nervous system. Methylmercury (CH3Hg+) is the most studied following the neurotoxic outbreaks identified as Minamata disease and the Iraq poisoning. The first description of the CNS pathology dates from 1954. Since then, the clinical neurology, the neuropathology and the mechanisms of neurotoxicity of organomercurials have been widely studied. The high thiol reactivity of CH3Hg+, as well as all mercury compounds, has been suggested to be the basis of their harmful biological effects. However, there is clear selectivity of CH3Hg+ for specific cell types and brain structures, which is not yet fully understood. The main mechanisms involved are inhibition of protein synthesis, microtubule disruption, increase of intracellular Ca2+ with disturbance of neurotransmitter function, oxidative stress and triggering of excitotoxicity mechanisms. The effects are more damaging during CNS development, leading to alterations of the structure and functionality of the nervous system. The major source of CH3Hg+ exposure is the consumption of fish and, therefore, its intake is practically unavoidable. The present concern is on the study of the effects of low level exposure to CH3Hg+ on human neurodevelopment, with a view to establishing a safe daily intake. Recommendations are 0.4 μg/kg body weight/day by the WHO and US FDA and, recently, 0.1 μg/kg body weight/day by the US EPA. Unfortunately, these levels are easily attained with few meals of fish per week, depending on the source of the fish and its position in the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali SF, CP LeBel and SC Bondy (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity.Neurotoxicology 13, 637–648.

    PubMed  CAS  Google Scholar 

  • Allen JW, LA Mutkus and M Aschner (2001a) Methylmercury-mediated inhibition of3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase.Brain Res. 902, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Allen JW, G Shanker and M Aschner (2001b) Methylmercury inhibits thein vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons.Brain Res. 894, 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M (1989) Brain, kidney and liver,203Hg-methylmercury uptake in the rat: relationship to the neutral amino acid carrier.Pharmacol. Toxicol. 65, 17–20.

    PubMed  CAS  Google Scholar 

  • Aschner M, MG Cherian, CD Klaassen, RD Palmiter, JC Erickson and AI Bush (1997) Metallothioneins in brain-the role in physiology and pathology.Toxicol. Appl. Pharmacol. 142, 229–242.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M and TW Clarkson (1988) Distribution of mercury 203 in pregnant rats and their fetuses following systemic infusions with thiol-containing amino acids and glutathione during late gestation. Teratology38, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, DR Conklin, CP Yao, JW Allen and KH Tan (1998) Induction of astrocyte metallothioneins (MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release.Brain Res. 813, 254–261.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, NB Eberle and HK Kimelberg (1991) Interactions of methylmercury with rat primary astrocyte cultures: methylmercury efflux.Brain Res. 554, 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, CP Yao, JW Allen and KH Tan (2000) Methylmercury alters glutamate transport in astrocytes.Neurochem. Int. 37, 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Bakir F, SF Damluji, L Amin-Zaki, M Murthada, A Khalidi, NY Al-Rawi, S Tikriti, HI Dahir, TW Clarkson, JC Smith and RA Doherty (1937) Methylmercury poisoning in Iraq: an interuniversity report.Science 181 230–241.

    Article  Google Scholar 

  • Bakir F, H Rustam, S Tikriti, SF Al-Damluji and H Shihristani. (1980) Clinical and epidemiological aspects of methylmercury poisoning.Postgrad. Med. J. 56, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Ball LK, R Ball R and Douglas Pratt (2001) An assessment of thimerosal use in childhood vaccines.Pediatrics 107, 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  • Ballatori N, MW Lieberman and W Wang (1998)N-acetylcysteine as an antidote in methylmercury poisoning.Environ. Health Perspect.106, 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Bapu C, PP Sood and M Nivsarkarl (2003) Organelle specific enzyme markers as indicators of methylmercury neurotoxicity and antidotal efficacy in mice.Biometals 16, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Bartell SM, RA Ponce, RN Sanga and EM Faustman (2000) Human variability in mercury toxicokinetics and steady-state biomarker ratios.Environ. Res. 84, 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Beasley SW and PG Jones (1986) Use of mercurochrome in the management of the large exomphalos.Aust. Paediatr. J. 22, 61–63.

    PubMed  CAS  Google Scholar 

  • Belletti S, G Orlandini, MV Vettori, A Mutti, J Uggeri, R Scandroglio, R Alinovi and R Gatti (2002) Time course of methylmercury effects on C6 glioma cells: submicromolar concentrations induce oxidative DNA damage and apoptosis.J. Neurosci. Res. 70, 703–711.

    Article  PubMed  CAS  Google Scholar 

  • Bernard S, A Enayati, L Redwood, H Roger and T Binstock (2001) Autism: a novel form of mercury poisoning. Med. Hypotheses 56, 462–471.

    Article  PubMed  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review.Chemosphere 40, 1335–1351.

    Article  PubMed  CAS  Google Scholar 

  • Bondy SC (1989) Intracellular calcium and neurotoxic events.Neurotoxicol. Teratol. 11, 527–531.

    Article  PubMed  CAS  Google Scholar 

  • Bondy SC and AK Agrawal (1980) The inhibition of cerebral high affinity receptor sites by lead and mercury compounds.Arch. Toxicol. 46, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Boveris A and B Chance (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen.Biochem. J. 134, 707–716.

    PubMed  CAS  Google Scholar 

  • Cadrin M, GO Wasteneys, EM Jones-Villeneuve, DL Brown and KR Reuhl (1988) Effects of emthylmercury on retinoic acid-induced neuroectodermal derivatives of embryonal carcinoma cells.Cell. Biol. Toxicol. 4, 61–80.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, S Barni, I Turin, C Gandini and L Manzo (2000) Early acute necrosis, delayed apoptosis and cytoskeletal breakdown in cultured cerebellar granule neurons exposed to methylmercury.J. Neurosci. Res. 59, 775–787.

    Article  PubMed  CAS  Google Scholar 

  • Castoldi AF, SM Candura, P Costa, L Manzo and LG Costa (1996) Interaction of mercury compounds with muscarinic receptor subtypes in the rat brain.Neurotoxicoloty 17, 735–741.

    CAS  Google Scholar 

  • Castoldi AF, T Coccini, S Ceccatelli and L Manzo (2001) Neurotoxicity and molecular effects of methylmercury.Brain Res. Bull. 55, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Chang LW (1977) Neurotoxic effects of mercury-a review.Environ. Res. 14, 329–373.

    Article  PubMed  CAS  Google Scholar 

  • Cheung MK and MA Verity (1985) Experimental methyl mercury neurotoxicity: locus of mercurial inhibition of brain protein synthesisin vivo andin vitro.J. Neurochem. 44, 1799–1807.

    Article  PubMed  CAS  Google Scholar 

  • Choi BH (1989) The effect of methylmercury on the developing brain.Prog. Neurobiol. 32, 447–470.

    Article  PubMed  CAS  Google Scholar 

  • Choi BH (1991) Effects of methylmercury on neuroepithelial germinal cells in the developing telencephalic vesicles of mice.Acta Neuropathol. 18, 359–365.

    Article  Google Scholar 

  • Choi BH, S Yee and M Robles (1996) The effects of glutathione glycoside in methyl mercury poisoning.Toxicol. Appl. Pharmacol. 141, 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW (2002) The three modern faces of mercury.Environ. Health Perspect. 110 Suppl 1, 11–23.

    PubMed  CAS  Google Scholar 

  • Clarkson TW, L Magos, C Cox, MR Greenwood, L Amin-Zaki, MA Majeed and SF Al-Damluji (1981) Tests of efficacy of antidotes for removal of methylmercury in human poisoning during the Iraq outbreak.J. Pharmacol. Exp. Ther. 218, 74–83.

    PubMed  CAS  Google Scholar 

  • Coccini T, G Randine, SM Candura, RE Nappi, LD Prockop and L Manzo (2000) Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring.Environ. Health. Perspect. 108, 29–33.

    Article  PubMed  CAS  Google Scholar 

  • Cox C, TW Clarkson, DO Marsh, L Amin-Zaki, S Tikriti and GJ Myers (1989) Dose-response analysis of infants prenatally exposed to methylmercury. An application of a single compartment model to single-strand hair analysis.Environ. Res. 49, 318–332

    Article  PubMed  CAS  Google Scholar 

  • Cox C, DO Marsh, GJ Myers and TW Clarkson (1995) Analysis of data on delayed development from the 1971–1972 outbreak of methylmercury poisoning in Iraq: assessment of influential points.Neurotoxicology 16, 727–730.

    PubMed  CAS  Google Scholar 

  • Daré E, ME Götz, B Zhivotovsky, L Manzo and S Ceccatelli (2000) Antioxidants J811 and 17\-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death.J. Neurosci. Res. 62, 557–565.

    Article  PubMed  Google Scholar 

  • Davidson PW, J Kost, GJ Myers, C Cox, TW Clarkson and CF Shamlaye (2001) Methylmercury and neurodevelopment: reanalysis of the Seychelles Child Development Study outcomes at 66 months of age.JAMA 285, 1291–1293.

    Article  PubMed  CAS  Google Scholar 

  • Davidson PW, GJ Myers, C Shamlaye, C Cox, P Gao, C Axtell, D Morris, J Sloane-Reeves, E Cernichiari, A Choi, D Palumbo and TW Clarkson (1999) Association between prenatal exposure to methylmercury and developmental outcomes in Seychellois children: effect modification by social and environmental factors.Neurotoxicology 20, 833–842.

    PubMed  CAS  Google Scholar 

  • Davidson PW, D Palumbo, GJ Myers, C Cox, CF Shamlaye, J Sloane-Reeves, E Cernichiari, GE Wilding and TW Clarkson (2000) Neurodevelopmental outcomes of Seychellois children from the pilot cohort at 108 months following prenatal exposure to methylmercury from the maternal fish diet.Environ. Res. 84, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Denny MF and WD Atchison (1994) Methylmercury-induced elevations in intrasynaptosomal zinc concentrations: an19F-NMR study.J. Neurochem. 63, 383–386.

    PubMed  CAS  Google Scholar 

  • Denny MF and WD Atchison (1996) Mercurial-induced alteriations in neuronal divalent cation homeostatis.Neurotoxicology 17, 47–62.

    PubMed  CAS  Google Scholar 

  • Denny MF, MF Hare and WD Atchison (1993) Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations.Toxicol. Appl. Pharmacol. 122, 222–232.

    Article  PubMed  CAS  Google Scholar 

  • Dodes JE (2001) The amalgam controversy. An evidence-based analysis.JADA 132, 348–356.

    PubMed  CAS  Google Scholar 

  • Doi R and M Tagawa (1983) A study on the biochemical and biologiocal behavior of methylmercury.Toxicol. Appl. Pharmacol. 69, 407–416.

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, B Pfeiffer and B Hamprecht (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione.J. Neurosci. 19, 562–569.

    PubMed  CAS  Google Scholar 

  • Dutczak WJ and N Ballatori (1994) Transport of the glutathionemethylmercury complex across liver canalicular membranes on reduced glutathione carriers.J. Biol. Chem. 269, 9746–9751.

    PubMed  CAS  Google Scholar 

  • DuVal G, BR Grubb and PJ Bentley (1987) Mercury accumulation in the eye following administration of methylmercury.Exp. Eye Res. 44, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi ME, NA Mansour and AT Eldefrawi (1977) Interactions of acetylcholine receptors with organic mercury compounds, InMembrane Toxicity (Miller M-W and AE Shamoo, Eds.), (Plenum Press: New York), pp. 499–462.

    Google Scholar 

  • Elferink JC (1999) Thimerosal: a versatile sulfhydryl reagent, calcium mobilizer, and cell function-modulating agent.Gen. Pharmacol. 33, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S and A Svenson (1978) Catalytic effects by thioltransferase on the transfer of methylmercury andp-mercuribenzoate from macromolecules to low molecular weight thiol compounds.Toxicology 10, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Ernst E and CT Coon (2001) Heavy metals in traditional Chinese medicines: a systematic review.Clin. Pharmacol. Ther. 70, 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Eskes C, P Honegger, L Juillerat-Jeanneret and F Monnet-Tschudi (2002) Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release.Glia 37, 43–52.

    Article  PubMed  Google Scholar 

  • Eto K (1997) Pathology of Minamata disease.Toxicol. Pathol. 25, 1052–1061.

    Google Scholar 

  • Eto K (2000) Minamata disease.Neuropathology 20 Suppl, 14–19.

    Article  Google Scholar 

  • Finkel T and NJ Holbrook (2000) Oxidants, oxidative stress and the biology of ageing.Nature 408, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Fonfría E, E Daré, M Benelli, C Suñol and S Ceccatelli (2002) Translocation of apopotosis-inducing factor in cerebellar granule cells exposed to neurotoxic agents inducing oxidative stress.Eur. J. Neurosci. 16, 2013–2016.

    Article  PubMed  Google Scholar 

  • Fonfría E, E Rodríguez-Farré and C Suñol (2001) Mercury interaction with the GABAA receptor modulates the benzodiacepine binding site in primary cultures of mouse cerebella granule cells.Neuropharmacology 41, 819–833.

    Article  PubMed  Google Scholar 

  • Fonnum F and EA Lock (2000) Cerebellum as a target for toxic substances.Toxicology Lett. 112–113, 9–16.

    Article  Google Scholar 

  • Fox DA and WK Boyes (2001) Toxic responses of the ocular and visual system, InCasarett & Doull's Toxicology: The Basic Science of Poisons, 6th Edition (Klaasen CD, Ed.), (McGraw-Hill: New York, USA), pp. 565–595.

    Google Scholar 

  • Frankish H (2001) Report finds no link between thimerosal and neurodevelopmental disorders.Lancet 358, 1163.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, A Teiling Gardlund, K Bergman, A Oskarsson, B Ohlin, B Danielsson and T Archer (1993) Effects of maternal dietary supplementation with selenite on the postnatal development of rat offspring exposed to methyl mercuryin utero.Pharmacol. Toxicol. 72, 377–382.

    PubMed  CAS  Google Scholar 

  • Freitas AJ, JB Rocha, H Wolosker and DO Souza (1996) Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes.Brain Res. 738, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama J, K Hirayama and A Yasutake (1994) Mechanism of methylmercury efflux from cultured astrocytes.Biochem. Pharmacol. 47, 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  • Gassó S, RM Cristòfol, G Selema, R Rosa, E Rodríguez-Farré and C Sanfeliu (2001) Antioxidant compounds and Ca2+ pathway blockers differentially protect against methylmercury and mercuric chloride neurotoxicity.J. Neurosci. Res. 66, 135–45.

    Article  PubMed  Google Scholar 

  • Gassó S, C Suñol, C Safeliu, E Rodríguez-Farré and RM Cristòfol (2000) Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices.Life Sci. 67, 1219–1231.

    Article  PubMed  Google Scholar 

  • Glynn AW, NG Ilback, D Brabencova, L Carlsson, EC Enqvist, E Netzel and A Oskarsson (1993) Influence of sodium selenite on203Hg absorption, distribution, and elimination in male mice exposed to methyl203Hg.Biol. Trace Elem. Res. 39, 91–107.

    Article  PubMed  CAS  Google Scholar 

  • Goldwater LJ (1936) From Hippocrates to Ramazini: early history of industrial medicine.Ann. Med. Hist. 8, 27–35.

    Google Scholar 

  • Gotelli CA, E Astolfi, C Cox, E Cernichiari and TW Clarkson (1985) Early biochemical effects of an organic mercury fungicide on infants: “dose makes the poison”.Science 227, 638–640.

    Article  PubMed  CAS  Google Scholar 

  • Goulet S, FY Doré and ME Mirault (2003) Neurobehavioral changes in mice chronically exposed to methylmercury during fetal and early postnatal development.Neurotoxicol. Teratol. 25, 1–13.

    Article  CAS  Google Scholar 

  • Goyer RA and TW Clarkson (2001) Toxic effects of metals, InCasarett & Doull's Toxicology: The Basic Science of Poisons, 6th Edition (Klaasen CD, Ed.), (McGraw-Hill: New York, USA), pp. 811–867.

    Google Scholar 

  • Graff RD, MM Falconer, DL Brown and KR Reuhl (1997) Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons.Toxicol. Appl. Pharmacol. 144, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, RF White, P Weihe and PJ Jorgensen (2003) Neurotoxic risk caused by stable and variable exposure to methylmercury from seafood.Ambul. Pediatr. 3, 18–23.

    Article  PubMed  Google Scholar 

  • Grandjean P, E Budtz-Jørgensen, RF White, PJ Jørgensen, P Weihe, F Debes and N Keiding (1999) Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years.Am. J. Epidemiol. 150, 301–305.

    PubMed  CAS  Google Scholar 

  • Grandjean P, P Weihe, RF White and F Debes (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury.Environ. Res. 77, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P, P Weihe, RF White, F Debes, S Araki, K Yokoyama, K Murata, N Sorensen, R Dahl and PJ Jørgensen (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury.Neurotoxicol. Teratol. 19, 417–428.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean P and RF White (1999) Effects of methylmercury exposure on neurodevelopment.JAMA 281, 896–897.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood MR (1985) Methylmercury poisoning in Iraq. An epidemiological study of the 19871–1972 outbreak.J Appl. Toxicol. 5, 148–159.

    Article  PubMed  CAS  Google Scholar 

  • Gregus Z, A Gyurasics, I Csanaky and Z Pinter (2001) Effects of methylmercury and organic acid mercurials on the disposition of exogenous selenium in rats.Toxicol. Appl. Pharmacol. 174, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B and JMC Gutteridge (1985) Oxygen radicals and the nervous system.Trends Neurosci. 8, 22–26.

    Article  CAS  Google Scholar 

  • Han KK, A Delacourte and B Hemon (1987) Chemical modification of thiol group(s) in protein: application to the study of anti-microtubular drugs binding.Comp. Biochem. Physiol. B. 88, 1057–1065.

    Article  PubMed  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution.Crit. Rev. Toxicol. 25, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Hare MF and WD Atchison (1995) Methylmercury mobilizes Ca++ from intracellular stores sensitive to inositol 1,4,5-triphosphate in NG108-15 cells.J. Pharmacol. Exp. Ther. 272, 1016–1023.

    PubMed  CAS  Google Scholar 

  • Hasegawa K, S Omata and H Sugano (1988) In vivo andin vitro effects of methylmercury on the activities of aminoacyl-tRNA synthetases in rat brain.Arch. Toxicol. 62, 470–472.

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, P Lamoureux and WD Atchison (2001) Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury.Toxicol. Appl. Pharmacol. 174, 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Hewett SJ and WD Atchison (1992) Effects of charge and lipophilicity on mercurial-induced reduction of45Ca2+ uptake in isolated nerve terminals of the rat.Toxicol. Appl. Pharmacol. 113, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo J, M Aschner, P Zatta and M Vasak (2001) Roles of the metallothionein family of proteins in the central nervous system.Brain. Res. Bull. 55, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Hughes WH (1957) A physicochemical rationale for the biological activity of mercury and its compounds.Ann. NY Acad. Sci. 65, 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Hunter D, RR Bomford and DS Russell (1940) Poisoning by methylmercury compounds.Quart. J. Med. 9, 193–213.

    CAS  Google Scholar 

  • Hunter D and DS Russell (1954) Focal cerebral and cerebellar atrophy in a human subject due to organic mercury compounds.J. Neurol. Neurosurg. Psychiat. 17, 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Hwang GW, T Furuchi and A Naganuma (2002) A ubiquitin-proteasome system is responsible for the protection of yeast and human cells against methylmercury.FASEB J. 16, 709–711.

    Article  PubMed  CAS  Google Scholar 

  • Igata A (1993) Epidemiological and clinical features of Minamata disease.Environ. Res. 63, 157–169.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, H Komachi, I Sato, T Himi, T Yuasa and S Murota. (1999) Induction of neuronal nitric oxide synthase by methylmercury in the cerebellum.J. Neurosci. Res. 55, 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, K Saijoh and K Sumino (1988) Action of mercurials on activity of partially purified soluble protein kinase C from mice.Pharmacol. Toxicol. 62, 278–281.

    PubMed  CAS  Google Scholar 

  • Kaiser J (2000) Mercury report backs strict rules.Science 289, 371–372.

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara Y, A Yasutake, T Adachi and K Hirayama (1996) Methylmercury transport across the placenta via neutral amino acid carrier.Arch. Toxicol. 70, 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen RA, H Komulainen and H Taipale (1989) Cellular mechanisms underlying the increase in cytosolic free calcium concentration induced by methylmercury in cerebrocortical synaptosomes from guinea pig.J. Pharmacol. Exp. Ther. 248, 1248–1254.

    PubMed  CAS  Google Scholar 

  • King KK, JE Kostka, ME Frischer and FM Saunders (2000) Sulfatereducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.Appl. Environ. Microbiol. 66, 2430–2437.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD (2001) Heavy metals and heavy-metal antagonists, InCasarett & Doull's Toxicology: The Basic Science of Poisons, 6th Edition (Klaasen CD, Ed.), (McGraw-Hill: New York, USA), pp. 1851–1875.

    Google Scholar 

  • Koh JY (2001) Zinc and disease of the brain.Mol. Neurobiol. 24, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Komulainen H and SC Bondy (1987) Increased free intrasynaptosomal Ca2+ by neurotoxic organometals: distinctive mechanisms.Toxicol. Appl. Pharmacol. 88, 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Kondo K (1997) Minamata disease in Niigata: epidemiology and legal social issues, InMineral and Metal Neurotoxicity, (Yasui M, MJ Strong and MA Verity, Eds.) (CRC Press: Boca Raton, Florida, USA), pp. 189–197.

    Google Scholar 

  • Kondo K (2000) Congenital Minamata disease: warnings from Japan's experience.J. Child. Neurol. 15, 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Kramer KK, J Liu, S Choudhuri and CD Klaassen (1996) Induction of metallothionein mRNA and protein in murine astrocyte cultures.Toxicol. Appl. Pharmacol. 136, 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Kranich O, R Dringen, M Sanberg and B Hamprecht (1998) Utilization of cysteine and cystine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine.Glia 22, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Kung MP, P Kostyniak, J Olson, M Malone and JA Roth (1987) Studies of thein vitro effect of methylmercury chloride on rat brain neurotransmitter enzymes.J. Appl. Toxicol. 7, 119–121.

    Article  PubMed  CAS  Google Scholar 

  • Laguna A de (1955)Pedacio Dioscorides Anazarbeo, Acerca de la Materia Medicinal y de los venenos mortiferos. Libro V, Cap. LXIX: Del Azogue, (Juan Latio, Anvers, Belgium), pp. 540–542. Facsímile edition by Comunidad de Madrid, 1991.

  • LeBel CP, SF Ali, M McKee and SC Bondy (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage.Toxicol. Appl. Pharmacol. 104, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • LeBel CP and SC Bondy (1991) Oxygen radicals: common mediators of neurotoxicity.Neurotoxicol. Teratol. 13, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Li S, SA Thompson and JS Woods (1996) Localization of γ-glutamylcysteine synthetase mRNA expression in mouse brain following methylmercury treatment using reverse transcriptionin situ PCR amplification.Toxicol. Appl. Pharmacol. 140, 180–187.

    Article  PubMed  CAS  Google Scholar 

  • Limke TL, JKL Otero-Montañez and WD Atchison (2003) Evidence for interactions between intracellular calcium stores during methylmercury-induced intracellular calcium dysregulation in rat cerebellar granule neurons.J. Pharmacol. Exp. Ther. 304, 949–958.

    Article  PubMed  CAS  Google Scholar 

  • Limke TL and WD Atchison (2002) Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells.Toxicol. Appl. Pharmacol. 178, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Love JL, GM Rush and H McGrath (2003) Total mercury and methylmercury levels in some New Zealand commercial marine fish species.Food Addit. Contam. 20, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Lund ME, W Banner Jr, TW Clarkson and M Berlin (1984) Treatment of acute methylmercury ingestion by hemodialysis withN-acetylcysteine (Mucomyst) infusion and 2,3-dimercaptopropane sulfonate.J. Toxicol. Clin. Toxicol. 22, 31–49.

    PubMed  CAS  Google Scholar 

  • Magos L, AW Brown, S Sparrow, E Bailey, RT Snowden and WR Skipp (1985) The comparative toxicology of ethyl- and methylmercury.Arch. Toxicol. 57, 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Marsh DO (1979) Organic mercury: methylmercury compounds, InIntoxications of the Nervous System — Part I. Handbook of Clinical Neurology, Vol.36, (Vinken PJ and GW Bruyn, Eds.), (North Holland: Amsterdam, The Netherlands), pp. 73–81.

    Google Scholar 

  • Marsh DO, TW Clarkson, C Cox, GJ Myers, L Amin-Zaki and S Al-Tikriti (1987) Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects.Arch. Neurol. 44, 1017–1022.

    PubMed  CAS  Google Scholar 

  • Marty MS and WD Atchison (1997) Pathways mediating Ca2+ entry in rat cerebellar granule cells followingin vitro exposure to methyl mercury.Toxicol. Appl. Pharmacol. 147, 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Marty MS and WD Atchison (1998) Elevations of intracellular Ca2+ as a probable contributor to decreased viability in cerebellar granule cells following acute exposure to methylmercury.Toxicol. Appl. Pharmacol. 150, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • McGinn AP (2002) Reducing our toxic burden, InState of the World 2002, (Starke L, Ed.), WW Norton & Co.: New York, USA), pp. 75–100.

    Google Scholar 

  • Miura K, S Himeno, N Koide and N Imura (2000) Effects of methylmercury and inorganic mercury on the growth of nerve fibers in cultured chick dorsal root ganglia.Tohoku J. Exp. Med. 192, 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Y Kobayashi, H Toyoda and N Imura (1998) Methylmercury-induced microtubule depolymerization leads to inhibition of tubulin synthesis.J. Toxicol. Sci. 23, 379–388.

    PubMed  CAS  Google Scholar 

  • Miura K, N Koide, S Himeno, I Nakagawa and N Imura (1999) The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines.Toxicol. Appl. Pharmacol. 160, 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Miura K, K Suzuki and N Imura (1978) Effects of methylmercury on mitotic mouse glioma cells.Environ. Res. 17, 453–471.

    Article  PubMed  CAS  Google Scholar 

  • Miyai M (1997) An appraisal on the judgements of the Kumamoto Minamata disease certification commission.Nippon Eiseigaku Zasshi 51, 711–721.

    PubMed  CAS  Google Scholar 

  • Miyamoto K, H Nakanishi, S Moriguchi, N Fukuyama, K Eto, J Wakamiya, K Murao, K Arimura and M Osame (2001) Involvement of enhanced sensitivity ofN-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity.Brain Res. 901, 252–258.

    Article  PubMed  CAS  Google Scholar 

  • Mullins ME and BZ Horowitz (1999) Iatrogenic neonatal mercury poisoning from Mercurochrome treatment of a large omphalocele.Clin. Pediatr. (Phila.)38, 111–112.

    Article  CAS  Google Scholar 

  • Mundy WR and TM Freudenrich (2000) Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium.Neurotoxicology 21, 1135–1144.

    PubMed  CAS  Google Scholar 

  • Myers GJ, PW Davidson, C Cox, C Shamlaye, E Cernichiari and TW Clarkson (2000a) Twenty-seven years studying the human neurotoxicity of methylmercury exposure.Environ. Res. 83, 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Myers GJ, PW Davidson, D Palumbo, C Shamlaye, C Cox, E Cernichiari and TW Clarkson (2000b) Secondary analysis from the Seychelles Child Development Study: the child behavior checklist.Environ. Res. 84, 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Myhre O and F Fonnum (2001) The effect of aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A.Biochem. Pharmacol. 62, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Nagashima KN (1997) A review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis.Toxicol. Pathol. 25, 624–631.

    PubMed  CAS  Google Scholar 

  • NAS (2000) National Research Council.Toxicological Effects of Methylmercury (National Academy Press: Washington D.C., USA).

    Google Scholar 

  • Nicotera P, G Bellomo and S Orrenius (1992) Calcium-mediated mechanisms in chemically induced cell death.Annu. Rev. Pharmacol. Toxicol. 32, 449–470.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya T, H Ohmori, K Hashimoto, K Tsuruta and S Ekino (1995) Expansion of methylmercury poisoning outside of Minamata: an epidemiological study on chronic methylmercury poisoning outside ofMinamata.Environ. Res. 70, 47–50.

    Article  PubMed  CAS  Google Scholar 

  • Nishioku T, N Takai, K-I Miyamoto, K Murao, C Hara, K Yamamoto and H Nakanishi (2000) Involvement of caspase-3 like protease in methylmercury-induced apoptosis of primary cultured rat cerebral microglia.Brain Res. 871, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Noh KM and Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes.J. Neurosci. 20, RC111.

    PubMed  CAS  Google Scholar 

  • Ornaghi F, S Ferrini S, M Prati and E Giavini (1993) The protective effects ofN-acetyl-L-cysteine against methyl mercury embryotoxicity in mice.Fundam. Appl. Toxicol. 20, 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Park ST, KT Lim, YT Chung and SU Kim (1996) Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists.Neurotoxicology 17, 37–46.

    PubMed  CAS  Google Scholar 

  • Parkinson A (2001) Biotransformation of xenobiotics, InCasarett & Doull's Toxicology: The Basic Science of Poisons, 6th Edition (Klaasen CD, Ed.), (McGraw-Hill: New York, USA), pp. 133–224.

    Google Scholar 

  • Pazderová J, A Jirásek, M Mráz and J Pechan (1974) Post-mortem findings and clinical signs of dimethyl mercury poisoning in man.Int. Arch. Arbeitsmed. 33, 323–328.

    Article  PubMed  Google Scholar 

  • Pentschew A (1958) Intoxikationen.Handbuch der spez. Path. Anat. u. Histol. 13, 1907.

    Google Scholar 

  • Pichichero ME, E Cernichiari, J Lopreiato and J Treanor. (2002) Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: a descriptive study.The Lancet 360, 1737–1741.

    Article  CAS  Google Scholar 

  • Qu H, T Syversen, M Aschner and U Sonnewald (2003) Effect of methylmercury on glutamate metabolism in cerebellar astrocytes in culture.Neurochem. Int. 1342, 1–6

    Google Scholar 

  • Rackman H (1952)Pliny. Natural History, Vol. 9, (Harvard University Press: Cambridge, MA, USA)

    Google Scholar 

  • Rajanna B, S Rajanna, E Hall and PR Yallapragada (1997)In vitro metal inhibition ofN-methyl-D-aspartate specific glutamate receptor binding in neonatal and adult brain.Drug. Chem. Toxicol. 20, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Renzoni A, F Zino and E Franchi (1998) Mercury levels along the food chain and risk for exposed populations.Environ. Res. 77, 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Rising L, D Vitarella, HK Kimilberg and M Aschner (1995) Metallothionein induction in neonatal rat primary astrocyte cultures protects against methylmercury cytotoxicity.J. Neurochem. 65, 1562–1568.

    PubMed  CAS  Google Scholar 

  • Sager PR and TL Syversen (1984) Differential responses to methylmercury exposure and recovery in neuroblastoma and glioma cells and fibroblasts.Exp. Neurol. 85, 371–382.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, A Kakita, K Wakabayashi, H Takahashi, A Nakano and H. Akagi (2002) Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods.Brain Res. 949, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, N Ikegami and A Nakano (1996) Protective effects of Ca2+ channel blockers against methyl mercury toxicity.Pharmacol Toxicol. 78, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Sanfeliu C, J Sebastià and SU Kim (2001) Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells.Neurotoxicology 22, 317–327.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA (1999) Methylmercury-induced generation of free radicals: biological implications.Met. Ions Biol. Syst. 36, 415–444.

    PubMed  CAS  Google Scholar 

  • Sarafian TA, DE Bredesen and MA Verity (1996) Cellular resistance to methylmercury.Neurotoxicology 17, 27–36.

    PubMed  CAS  Google Scholar 

  • Sarafian TA, L Vartavarian, DJ Kane, DE Bredesen and MA Verity (1994) bcl-2 expression decreases methyl mercury-induced free-radical generation and cell killing in a neural cell line.Toxicol. Lett. 74, 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian T and MA Verity (1990) Altered patterns of protein phosphorylation and synthesis caused by methylmercury in cerebellar granule cell culture.J. Neurochem. 55, 922–929.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian T and MA Verity (1991) Oxidative mechanisms underlying methyl mercury neurotoxicity.Int. Dev. Neurosci. 9, 147–153.

    Article  CAS  Google Scholar 

  • Sattler R, MP Charlon, M Hafner and M Tyaminski (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity.J. Neurochem. 71, 2349–2364.

    Article  PubMed  CAS  Google Scholar 

  • Scheuhammer AM and MG Cherian (1985) Effects of heavy metal cations, sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors.Biochem. Pharmacol. 34, 3405–3413.

    Article  PubMed  CAS  Google Scholar 

  • Schionning JD, JO Larsen, T Tandrup and H Braendgaard (1998) Selective degeneration of dorsal root ganglia and dorsal nerve roots in methylmercury intoxicated rats: a stereological study.Acta Neuropathol. 96, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Shafer TJ and WD Atchison (1991) Methylmercury blocks N- and L-type Ca2+ channels in nerve growth factor-differentiated pheochromocytoma (PC12) cells.J. Pharmacol. Exp. Ther. 258, 149–157.

    PubMed  CAS  Google Scholar 

  • Shanker G, JW Allen, LA Mutkus and M Aschner (2001) The uptake of cysteine in cultured primary astrocytes and neurons.Brain Res. 902, 156–163.

    Article  PubMed  CAS  Google Scholar 

  • Shanker G and M Aschner (2003) Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants.Brain Res. Mol. Brain Res. 110, 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Shanker G and M Aschner (2001) Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport.J. Neurosci. Res. 66, 998–1002.

    Article  PubMed  CAS  Google Scholar 

  • Shinyashiki M, Y Kumagai, H Nakajima, J Nagafune, S Homma-Takeda, M Sagai and N Shimojo (1998) Differential changes in rat brain nitric oxide synthasein vivo andin vitro by methylmercury.Brain Res. 798, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Shiraki H (1979) Neuropathological aspects of organic mercury intoxication, including Minamata disease, InIntoxications of the Nervous System — Part I. Handbook of Clinical Neurology, Vol.36, (Vinken P] and GW Bruyn, Eds.), (North-Holland: Amsterdam, The Netherlands), pp. 83–145.

    Google Scholar 

  • Siegler RW, DW Nierenberg and WF Hickey (1999) Fatal poisoning from liquid dimethylmercury: a neuropathologic study.Hum. Pathol. 30, 720–723.

    Article  PubMed  CAS  Google Scholar 

  • Sigerest HE (1996)Four Treatises of Theophrastus von Hohenheim Called Paracelsus (The Johns Hopkins University Press: Baltimore, MD, USA).

    Google Scholar 

  • Sirois JE and WD Atchison (2000) Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells.Toxicol. Appl. Pharmacol. 167, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Soares D, J Sarkis, R Muller, E Brabo and E Santos (2002) Correlation between mercury and selenium concentrations in Indian hair from Rondinia State, Amazon region, Brazil.Sci. Total Environ. 287, 155–161.

    Article  PubMed  Google Scholar 

  • Sood PP and KR Unnikumar (1987) Effect ofN-acetyl-DL-homocysteine thiolactone and 2,3-dimercaptosuccinic acid on the restoration of alkaline phosphatase in the nervous system of rat during methylmercury toxication.J. Environ. Pathol. Toxicol. Oncol. 7, 21–28.

    PubMed  CAS  Google Scholar 

  • Steurwald U, U Weihe, PJ Jørgensen, K Bjerve, J Brock, B Heinzow, E Budtz-Jørgensen and P Grandjean (2000) Maternal seafood diet, methylmercury exposure, and neonatal neurologic function.J. Pediat. 136, 599–605.

    Article  Google Scholar 

  • Szucs A, C Angiello, J Salanki and DO Carpenter (1997) Effects of inorganic mercury and methylmercury on the ionic currents of cultured rat hippocampal neurons.Cell. Mol. Neurobiol. 17, 273–288.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, N Morikawa, H Matsumoto and Y Shiraishi (1962) A pathological study of Minamata disease in Japan.Acta Neuropathol. 2, 40–57.

    Article  Google Scholar 

  • Taylor TJ, F Rieders and JJ Kocsis (1973) The role of Hg++ and methyl mercury on lipid peroxidation.Fed. Proc. 32, 261.

    Google Scholar 

  • Thompson SA, CC White, CM Krejsa, D Diaz, JS Woods, DL Eaton and TJ Kavanagh (1999) Induction of glutamate-cysteine ligase (gamma-glutamylcysteine synthetase) in the brains of adult female mice subchronically exposed to methylmercury.Toxicol. Lett. 29, 1–9.

    Article  Google Scholar 

  • Toescu EC (1998) Apoptosis and cell death: where does Ca2+ fit in?Cell Calcium 24, 387–403.

    Article  PubMed  CAS  Google Scholar 

  • Toribara TY (2001) Analysis of single hair by XRF discloses mercury intake.Hum. Exp. Toxicol. 20, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Uchino M, Y Tanaka, Y Ando, T Yonehara, A Hara, I Mishima, T Okajima and M Ando (1995) Neurologic features of the chronic Minamata disease (organic mercury poisoning) and incidence of the complications with aging.J. Environ. Sci. Health B 30, 699–715.

    Article  PubMed  CAS  Google Scholar 

  • US EPA (1997)Health Effects of Mercury and Mercury Compounds, Mercury Study Report to Congress, Vol. V, EPA-452/R-97-007, (Environmental Protection Agency, Washington DC, USA).

    Google Scholar 

  • US EPA (2001)Water Quality Criterion for the Protection of Human Health:Methyl Mercury, EPA 0823-R-01-001, (Environmental Protection Agency, Washington DC, USA).

    Google Scholar 

  • Usuki F, A Yasutake, F Umehara, H Tokunaga, M Matsumoto, K Eto, S Ishiura and I Higuchi (2001)In vivo protection of a water-soluble derivative of vitamin E, Trolox, against methylmercury-intoxication in the rat.Neurosci. Lett. 304, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Veen A-J van't (2001) Vaccines without thimerosal. Why so necessary, why so long coming?Drugs 61, 565–572.

    Article  Google Scholar 

  • Verity MA, WJ Brown and M Cheung (1975) Organic mercurial encephalopathy:in vivo andin vitro effects of methyl mercury on synaptosomal respiration.J. Neurochem. 25, 759–766.

    Article  PubMed  CAS  Google Scholar 

  • Vijayalakshmi K and PP Sood (1994) Ameliorative capacities of vitamins and monothiols post therapy in the restoration of methylmercury altered glutathione metabolism.Cell. Mol. Biol. 40, 211–224.

    PubMed  CAS  Google Scholar 

  • Watts J (2001) Mercury poisoning victims could increase by 2000.Lancet 358, 1349.

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2001) Selenium and the brain: a review.Nutr. Neurosci. 4, 81–97.

    PubMed  CAS  Google Scholar 

  • WHO (1989)Environmental Health Criteria 88: Environmental aspects of mercury. International Programme of Chemical Safety, (World Health Organization, Geneve, Switzerland).

    Google Scholar 

  • WHO (1990)Environmental Health Criteria 101: Methylmercury. International Programme of Chemical Safety, (World Health Organization, Geneve, Switzerland).

    Google Scholar 

  • WHO (1991)Environmental Health Criteria 118: Inorganic mercury. International Programme of Chemical Safety, (World Health Organization, Geneve, Switzerland).

    Google Scholar 

  • Wood JM, FS Kennedy and CG Rosen (1968) Synthesis of methylmercury by extracts of a methanogenic bacterium.Nature 220, 173–174.

    Article  PubMed  CAS  Google Scholar 

  • Yagame H, T Horigome, T Ichimura, J Uchiyama and S Omata (1994) Differential effects of methylmercury on the phosphorylation of protein species in the brain of acutely intoxicated rats.Toxicology 92, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Yallapragada PR, S Rajanna, S Fail and B Rajanna (1996) Inhibition of calcium transport by mercury salts in rat cerebellum and cerebral cortexin vitro.J. Appl. Toxicol. 16, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Yasutake A, K Hirayama and M Inoue (1989) Mechanism of urinary excretion of methylmercury in mice.Arch. Toxicol. 63, 479–483.

    Article  PubMed  CAS  Google Scholar 

  • Yasutake A, A Nakano and K Hirayama (1998) Induction by mercury compounds of brain metallothionein in rats: Hg0 exposure induces long-lived brain metallothionein.Arch. Toxicol. 72, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Yao CP, JW Allen, DR Conklin and M Aschner (1999) Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity.Brain Res. 818, 414–420.

    Article  PubMed  CAS  Google Scholar 

  • Yee S and BH Choi (1994) Methylmercury poisoning induces oxidative stress in the mouse brain.Exp. Mol. Pathol. 60, 188–196.

    Article  PubMed  CAS  Google Scholar 

  • Yee S and BH Choi (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning.Neurotoxicology 10, 17–26.

    Google Scholar 

  • Yoneda S and KT Suzuki (1997) Detoxification of mercury by selenium by binding of equimolar Hg−Se complex to a specific plasma protein.Toxicol. Appl. Pharmacol. 143, 274–280.

    Article  PubMed  CAS  Google Scholar 

  • Yoshino Y, T Mozai and K Nakao (1966) Biochemical changes in the brain in rats poisoned with an alkylmercury compound, with special reference to the inhibition of protein synthesis in brain cortex slices.J. Neurochem. 13, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y and WD Atchison (1997) Action of methylmercury on GABA(A) receptor-mediated inhibitory synaptic transmission is primarily responsible for its early stimulatory effects on hippocampal CA1 excitatory synaptic transmission.J. Pharmacol. Exp. Ther. 282, 64–73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coral Sanfeliu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanfeliu, C., Sebastià, J., Cristòfol, R. et al. Neurotoxicity of organomercurial compounds. neurotox res 5, 283–305 (2003). https://doi.org/10.1007/BF03033386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033386

Keywords

Navigation