Skip to main content
Log in

Accumulation of sweet protein monellin is regulated by thepsbA 5′UTR in tobacco chloroplasts

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Post-transcriptional RNA processing and translational regulations are important steps for gene expression. To analyze the 5′UTRof psbA that enhances translation of the sweet protein monellin in chloroplasts, we cloned the monellin gene, with and without thepsbA 5′UTR, into the chloroplast expression vector for chloroplast transformation. Transgenic plants were identified as being transplastomic via PCR and Southern blot analyses. We also observed non-specific recombination during tobacco chloroplast transformation. Analyses of the transcription patterns showed that intercistronic cleavage of the psbA mRNA 5′ untranslated (UTR) region was functional at the mature stage, with the monocistronic mRNA ofmonellin increasing while its dicistronic mRNA decreased. Moreover, monellin accumulation accounted for 2.3% of the total soluble protein at the mature stage, but only 1.3% at the young stage in transplastomic lines that contained the 5′UTRof psbA. These results suggest that activation of the endonucleolytic cleavage of thepsbA 5′UTR element depends on chloroplast developmental conditions, and that it enhances the accumulation of sweet protein monellin in those chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adams CC, Stern DB (1990) Control of mRNA stability in chloroplasts by 3′ inverted repeats: Effects of stem and loop mutations on degradation ofpsbA mRNAin vitro. Nucl Acids Res18: 6003–6010

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Kato H, Asayama M, Shirai M (2001) An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. Nucl Acids Res29: 1835–1843

    Article  PubMed  CAS  Google Scholar 

  • Alexander C, Faber N, Klaff P (1998) Characterization of protein-binding to the spinach chloroplast psbA mRNA 5′ untranslated region. Nucl Acids Res26: 2265–2272

    Article  PubMed  CAS  Google Scholar 

  • Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol45: 1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Baginsky S, Gruissem W (2002) Endonudeolytic activation directs dark-induced chloroplast mRNA degradation. Nucl Acids Res30: 4527–4533

    Article  PubMed  CAS  Google Scholar 

  • Barkan A (1988) Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J7: 2637–2644

    PubMed  CAS  Google Scholar 

  • Bock R (2000) Sense from nonsense: How the genetic information of chloroplasts is altered by RNA editing. Biochimie82: 549–557

    Article  PubMed  CAS  Google Scholar 

  • Bohak Z, Li SL (1976) The structure of monellin and its relation to the sweetness of the protein. Biochim Bio-phys Acta427: 153–170

    CAS  Google Scholar 

  • Bruick RK, Mayfield SP (1998) Processing of the psbA 5′ untranslated region inChlamydomonas reinhardtii depends upon factors mediating ribosome association. J Cell Biol143: 1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Stern D (1991) Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J Biol Chem266: 24205–24211

    PubMed  CAS  Google Scholar 

  • Chung HJ, Cho IS, Kim JH, In DS, Hur CG, Song JS, Woo SS, Choi DW, Liu JR (2003) Changes in gene expression during hairy root formation byAgrobacterium rhizogenes infection in ginseng. J Plant Biol46: 187–198

    Article  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol20: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol16: 345–348

    Article  PubMed  CAS  Google Scholar 

  • DeCosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Btcry2Aa2 Operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol19: 71–74

    Article  CAS  Google Scholar 

  • Dhingra A, Portis Jr AR, Daniell H (2004) Enhanced translation of a chloroplast-expressedRbcS gene restores small subunit levels and photosynthesis in nuclearRbcS antisense plants. Proc Natl Acad Sci USA101: 6315–6320

    Article  PubMed  CAS  Google Scholar 

  • Edens L, van der Wel H (1985) Microbial synthesis of the sweet tasting plant protein thaumatin. Trends Biotechnol3: 61–64

    Article  CAS  Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999)In vivo analysis of plastidpsbA,rbcL andrp/32 UTR elements by chloroplast transformation: Tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J19: 333–345

    Article  PubMed  CAS  Google Scholar 

  • Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol53: 145–151

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J1: 71–79

    Article  Google Scholar 

  • Fujitani Y, Kobayashi I (2003) Asymmetric random walk in a reaction intermediate of homologous recombination. J Theor Biol220: 359–370

    Article  PubMed  CAS  Google Scholar 

  • Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green algaChlamydomonas reinhardtii. Curr Genet26: 438–442

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham JD (1979) Protein sweeteners,In CAM Hough, KJ Parker, eds, Development in Sweeteners-1. Applied Science Publishers, London, pp 87–123

    Google Scholar 

  • Hirose T, Sugiura M (1996) Cis-acting elements and transacting factors for accurate translation of chloroplast psbA mRNAs: Development of anin vitro translation system from tobacco chloroplasts. EMBO J15: 1687–1695

    PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplastndhD mRNA: A possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J16: 6804–6811

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (2004) Functional Shine-Dalgarno-like sequences for translational initiation of chloroplast mRNAs. Plant Cell Physiol45: 114–117

    Article  PubMed  CAS  Google Scholar 

  • Jirgensons B (1976) Conformational transitions of monellin, an intensely sweet protein. Biochim Biophys Acta446: 255–261

    PubMed  CAS  Google Scholar 

  • Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horvath EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics152: 1111–1122

    PubMed  CAS  Google Scholar 

  • Kim IH, Lim KJ (1996) Large-scale purification of recombinant monellin from yeast. J Fermentat Bioengineer82: 180–182

    Article  CAS  Google Scholar 

  • Kim J, Mayfield SP (2002) The active site of the thioredoxin-like domain of chloroplast protein disulfide isomerase, RB60, catalyzes the redox-regulated binding of chloroplast poly(A)-binding protein, RB47, to the 5′ untranslated region of psbA mRNA. Plant Cell Physiol43: 1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Christopher DA, Mullet JE (1993) Direct evidence for selective modulation of psbA,rpoA,rbcL and 16S rRNA stability during barley chloroplast development. Plant Mol Biol22: 447–463

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kang CH, Kim R, Cho JM, Lee YB, Lee TK (1989) Redesigning a sweet protein: Increased stability and renaturability. Prot Engineer2: 571–575

    Article  CAS  Google Scholar 

  • Klaff P (1995) mRNA decay in spinach chloroplasts: psbA mRNA degradation is initiated by endonucleolytic cleavages within the coding region. Nucl Acids Res23: 4885–4892

    Article  PubMed  CAS  Google Scholar 

  • Kohmura M, Nio N, Ariyoshi Y (1990) Complete amino acid sequence of the sweet protein monellin. Agric Biol Chem54: 2219–2224

    PubMed  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of theBacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA96: 1840–1845

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Daniell H (2004) Engineering the chloroplast genome for hyper-expression of human therapeutic proteins and vaccine antigens. Meth Mol Biol267: 365–383

    CAS  Google Scholar 

  • Lee MK, Kim HS, Kim SH, Park YD (2004) T-DNA integration patterns in transgenic tobacco plants. J Plant Biol47: 179–186

    Article  CAS  Google Scholar 

  • Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed11: 1–13

    Article  CAS  Google Scholar 

  • Li HQ, Li MR (2004) RecQ helicase enhances homologous recombination in plants. FEBS Lett574: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Zeitz P, Kóssel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol32: 343–365

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (1993) Towards plastid transformation in higher plants. Trends Biotech11: 101–107

    Article  CAS  Google Scholar 

  • Monde RA, Greene JC, Stern DB (2000) The sequence and secondary structure of the 3′ UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol4: 529–542

    Article  Google Scholar 

  • Morris JA, Cagan RH (1972) Purification of monellin, the sweet principal ofDioscoreophyllum cumminsii. Biochim Biophys Acta261: 114–122

    PubMed  CAS  Google Scholar 

  • Ogata C, Hatada M, Tomlinson G, Shin WC, Kim SH (1987) Crystal structure of the intensively sweet protein monellin. Nature328: 739–742

    Article  PubMed  CAS  Google Scholar 

  • Park MC, Shin J, Kim N, Cho H, Park S, An K, Lee S, An G (2003) High-frequencyAgrobacterium-mediated genetic transformation of Tongil rice varieties. J Plant Biol46: 23–30

    Article  CAS  Google Scholar 

  • Penarrubia L, Kim R, Giovannoni J, Kim SH, Fischer RL (1992) Production of the sweet protein monellin in transgenic plants. Bio/Technol10: 561–564

    Article  CAS  Google Scholar 

  • Ruf S, Zeitz P, Kssel H (1994) RNA editing of unspliced and dicistronic transcripts of the intron containing reading frame IRF170 from maize chloroplasts. Proc Natl Acad Sci USA91: 2295–2299

    Article  PubMed  CAS  Google Scholar 

  • Sexton TB, Christopher DA, Mullet JE (1990) Light-induced switch in barley psbD-psbC promoter utilization: A novel mechanism regulating chloroplast gene expression. EMBO J9: 4485–4494

    PubMed  CAS  Google Scholar 

  • Shen Y, Danon A, Christopher DA (2001) RNA binding-proteins interact specifically with theArabidopsis chloroplast psbA mRNA 5′ untranslated region in a redoxdependent manner. Plant Cell Physiol42: 1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Spadaccini R, Crescenzi O, Tancredi T, Casamassimi ND, Saviano G, Scognamiglio R, Donate AD, Temussi PA (2001) Solution structure of a sweet protein: NMR study of MNEI, a single chain monellin. J Mol Biol305: 505–514

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Trivedi PK, Nath P (2004) Components involved in RNA-protein interaction at the 3′ untranslated region of rbcL mRNA ofPopulus deltoides. Plant Sci167: 765–772

    Article  CAS  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schüttler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol18: 333–338

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1993) Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J12: 601–606

    PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J7: 845–848

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Sugiura M (1996) Regulation of gene expression in chloroplasts of higher plants. Plant Mol Biol32: 315–326

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Biol Rep16: 231–241

    Article  CAS  Google Scholar 

  • Westhoff P, Herrmann RG (1988) Complex RNA maturation in chloroplasts: ThepsbB operon from spinach. Eur J Biochem171: 551–564

    Article  PubMed  CAS  Google Scholar 

  • Yohn CB, Cohen A, Rosch C, Kuchka MR, Mayfield SP (1998) Translation of the chloroplast psbA mRNA requires the nuclear-encoded poly(A)-binding protein, RB47. J Cell Biol142: 435–442

    Article  PubMed  CAS  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie82: 583–601

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Eibl C, Koop HU (2003) The stem-loop region of the tobacco psbA 5′UTR is an important determinant of mRNA stability and translation efficiency. Mol Gen Genom269: 340–349

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Bum Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, K.H., Shin, KS., Lee, YH. et al. Accumulation of sweet protein monellin is regulated by thepsbA 5′UTR in tobacco chloroplasts. J. Plant Biol. 49, 34–43 (2006). https://doi.org/10.1007/BF03030786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030786

Keywords

Navigation