Skip to main content
Log in

Germination kinetics and seed reserve mobilization in two flax (Linum usitatissimum L.) cultivars under moderate salt stress

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Because of its high contents of protein, α-linolenic-rich oil, lignans, and fiber, demand is increasing for flax(Linum usitatissi-mum L.) and flax seed oil as a food source. In this comparative survey, we examined germination and the mobilization of seed storage products (lipids and soluble proteins) of 3-d-old seedlings from two flax cultivars (N 51 and H 52) challenged with moderate salinity (up to 200 mM NaCl). At the highest salt concentration, germination appeared to be cultivar-dependent, with that of ‘N 51’ being less impaired and delayed than in ’H 52’. Sodium chloride inhibited germination via osmotic and toxic effects, so that seed viability was altered, especially in ‘H 52’. At 200 mM NaCl, lipid mobilization was delayed in the earliest germination phases. This response was associated with increased proportions of linolenic acid contents in both cultivars and more linolenic acid-rich molecular species of TAGs. Irrespective of the salt level, soluble protein contents in both cultivars decreased over time, although a salt-related precocity of protein degradation occurred at 200 mM NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ahmad J, Bano M (1992) The effect of sodium chloride on the physiology of cotyledons and mobilization of reserve food inCicer arietinum. Pak J Bot24: 40–48

    Google Scholar 

  • Allen CF, Good P (1971) Acyl lipids in photosynthetic systems. Methods Enzymol23: 523–547

    Article  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil231: 243–254

    Article  CAS  Google Scholar 

  • Ashraf M, Wahid S (2000) Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress. Seed Sci Technol28: 641–656

    Google Scholar 

  • Ashraf M, Zafar R, Ashraf MY (2003) Time-course changes in the inorganic and organic components of germinating sunflower achenes under salt (NaCl) stress. Flora198: 26–36

    Google Scholar 

  • Atia A, Ben Hamed K, Debez A, Abdelly C (2006) Salt and seawater effects on the germination ofCrithmum maritimum, In M Oztürk, Y Waisel, MA Khan, G Görk, eds, Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser Verlag, Basel, pp 27–31

    Google Scholar 

  • Ben Miled DD, Zarrouk M, Cherif A (2000) Sodium chloride effects on lipase activity in germinating rape seeds. Biochem Soc Trans28: 899–902

    Article  PubMed  CAS  Google Scholar 

  • Bewley DJ (1997) Seed germination and dormancy. Plant Cell9: 1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bourlaye F, Duguid S, Cloutier S (2004) Cloning of fatty acid biosynthetic genes â-ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax(Linum usitatissimum L.) seeds. Plant Sci166: 1487–1496

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding. Anal Biochem72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Dantas BF, de SÁ Ribeiro L, Aragao CA (2005) Physiological response of cowpea seeds to salinity stress. Rev Bras de Sementes27: 1.144–148

    Google Scholar 

  • Debez A, Ben Hamed K, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakilemaritima. Plant Soil262: 179–189

    Article  CAS  Google Scholar 

  • Dodd GL, Donovan LA (1999) Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Amer J Bot86: 1146–1153

    Article  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kinsbury RW, Kelly DB, Gunningham GA, Wrona AF (1980) Saline culture of crops: A genetic approach. Science210: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean(Glycine max L. Merrill) cultivars. J Agron Crop Sci188: 86–93

    Article  CAS  Google Scholar 

  • Filho EG, Sodek L (1988) Effect of salinity on ribonuclease activity ofVigna unguiculata cotyledons during germination. J Plant Physiol132: 307–311

    Google Scholar 

  • Gigliotti C, Daghetta AA, Sidoli A (1993) Indagine conoscitiva sul contenuto trigliceridico di oli extra vergini di oliva di varia provenienza: Research on triglyceride content in extra virgin olive oils of different geographic origin. Riv Ital Sost Gr70: 483–489

    CAS  Google Scholar 

  • Huang AHC, Moreau RA, Liu KDF (1978) Development and properties of wax ester hydrolase in the cotyledons of jojoba seedlings. Plant Physiol61: 339–341

    Article  PubMed  CAS  Google Scholar 

  • Huang YS, Ziboh A (2001) Gamma-Linolenic Acid: Recent Advances in Biotechnology and Clinical Applications. AOCS Press, Champaign, USA

    Google Scholar 

  • Kaya MD, Ipek A, Öztürk A (2003) Effects of different soil salinity levels on germination and seedling growth of safflower(Carthamus tinctorius L.). Turk J Agric For27: 221–227

    Google Scholar 

  • Kayani SA, Naqvi HH, Ting IP (1990) Salinity effects on germination and mobilization of reserves in jojoba seed. Crop Sci30: 704–708

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly for the head of bacteriophage T4. Nature227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Lay CL, Dybing DD (1989) Linseed,In G Robbelen, RK Downey, Ashri A, eds, Oil Crops of the World: Their Breeding and Utilisation. McGraw-Hill, New York, pp 416–430

    Google Scholar 

  • Lechevallier D (1966) Les lipides des Lemnacées: Analyse des acides gras des frondes deSpirodela polyrrhiza. C R Acad Sci Paris263: 1849–1852

    CAS  Google Scholar 

  • £ukaszewicz M, Szopa J, Krasowska A (2004) Susceptibility of lipids from different flax cultivars to peroxidation and its lowering by added antioxidants. Food Chem88: 225–231

    Article  CAS  Google Scholar 

  • Mayer AM, Poljakoff-Mayber A (1989) The Germination of Seeds, Ed 4. Pergamon Press, Oxford

    Google Scholar 

  • Metcalfe D, Schmitz AA, Pelka JR (1966) Rapid preparation of fatty acid esters from lipids. Anal Chem38: 524–535

    Article  Google Scholar 

  • Mondal TK, Bal AR, Pal S (1988) Effect of salinity on germination and seedling growth of different rice(Oryza sativa L.) cultivars. J Ind Soc Coast Agric Res6: 91–97

    Google Scholar 

  • Oomah BD, Der TJ, Godfrey DV (2006) Thermal characteristics of flaxseed(Linum usitatissimum L.) proteins. Food Chem98: 733–741

    Article  CAS  Google Scholar 

  • Prakash L, Dutt M, Prathapasenan G (1988) NaCl alters contents of nucleic acids, proteins, polyamines and the activity of agmatine deiminase during germination and seedling growth of rice(Oryza sativa L.). Aust J Plant Physiol15: 769–776

    Article  CAS  Google Scholar 

  • Sammour RH (1999) Proteins of linseed(Linum usitatissimum L.), extraction and characterization by electrophoresis. Bot Bull Acad Sin40: 121–126

    CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/ omega-3 essential fatty acids. Biomed Pharmacother56: 365–379

    Article  PubMed  CAS  Google Scholar 

  • Smaoui A, Cherif A (2000) Changes in molecular species of triacylglycerols in developing cotton seeds under salt stress. Biochem Soc Trans28: 902–905

    Article  PubMed  CAS  Google Scholar 

  • Shon YG, Lee BH, Kang KY, Lee JJ (2005) Effects of NaCl on germination, antioxidant responses, and proline content in two rice cultivars. J Plant Biol48: 201–208

    Article  Google Scholar 

  • Soltania A, Gholipoorb M, Zeinalia E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot55: 195–200

    Article  Google Scholar 

  • Taamalli W, Abaza L, Ben Youssef N, Ben Miled DD, Zarrouk M (2004) Dégradation des lipides dans les semences de tournesol (Helianthus annuus L.) au cours de la croissance post germinative en conditions de stress salin. Riv Ital Sost Gr81: 90–97

    Google Scholar 

  • Ungar IA (1978) Halophyte seed germination. Bot Rev44: 233–64

    Article  CAS  Google Scholar 

  • Wanasundara PKJPD, Wanasundara UN, Shahidi F (1999) Changes in Flax (Linum usitatissimum L.) seed lipids during germination. JAOCS76: 41–48

    Article  CAS  Google Scholar 

  • Younis ME, Hasaneen MNA, Nemet-Alla MM (1987) Effects of salinity on certain factors associated with the germination of three different seeds high in fats. Ann Bot60: 337–344

    Google Scholar 

  • Yupsanis T, Moustakas M, Eleftheriou R Damianidou K (1994) Protein phosphorylation-dephosphorylation in alfalfa seeds germinating under salt stress. J Plant Physiol143: 234–240

    CAS  Google Scholar 

  • Zarrouk M (1999) Contribution à l’étude du métabolisme glycérolipidique comparé chez deux espèces oléagineuses: Olivier et colza. Effets des contraintes environnementales. Es-Sciences D. thesis. Faculty of Sciences of Tunis, Tunis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Debez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebei, K., Debez, A., Herchi, W. et al. Germination kinetics and seed reserve mobilization in two flax (Linum usitatissimum L.) cultivars under moderate salt stress. J. Plant Biol. 50, 447–454 (2007). https://doi.org/10.1007/BF03030681

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030681

Keywords

Navigation