Skip to main content
Log in

Root Plasma Membrane Lipid Changes in Relation to Water Transport in Pepper: a Response to NaCl and CaCl2 Treatment

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Seeds ofCapsicum annuum were grown hydroponically in a nutrient medium with or without NaCI and with supplemented Ca2+. Plasma membranes were isolated from roots using a two-phase aqueous polymer technique. The lipid composition (fatty acids, phospholipids and sterols) of the purified plasma membrane was determined. In the presence of NaCI, changes in lipid composition were shown, driving the membrane to a more rigid state. This was accomplished by an increase of (i) the saturation of fatty acids, (ii) the content of stearic acid versus palmitic acid, and (iii) the sterols concentration in the membrane. The changes in the phospholipid composition were also related to NaCI, which reverted when Ca2+ was also present in the nutrient solution. Furthermore, the alterations of plasma membrane lipid composition under salinity and calcium can be related to water transport properties of the membrane, but other physiological responses have to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPH:

diphenylhexatriene

PA:

phosphatidic acid

PC:

phosphatidylcholine

PLD:

phospholipase D

PS:

phosphati-dylserine

PE:

phosphatidylethanolamine

Literature Cited

  • Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol97: 1136–1145.

    Article  PubMed  CAS  Google Scholar 

  • Berglund AB, Larsson KE, Lijenberg CS (2004) Permeability behaviour of lipid vesicles prepared from plant plasma membranes-impact of compositional changes. Biochim Biophys Acta1682: 11–17

    PubMed  CAS  Google Scholar 

  • Bhide SY, Berkowitz ML (2005) Structure and dynamics of water at the interface with phosholipid bilayers. J Chem Phys 123: Art No 224702.

  • Bonza MC, Luoni L, De Michelis Ml (2001) Stimulation of plant plasma membrane Ca+2 ATPase activity by acidic phospholipids. Physiol Plant112: 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Böttcher CFJ, Van Gent CM, Priest C (1961) A rapid and sensitive sub-micro phosphorus determination. Anal Chim Acta24: 203–204.

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cabanero FJ, Martmez V, Carvajal M (2004) Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determine calcium uptake? Plant Sci166: 443–450.

    Article  CAS  Google Scholar 

  • Cachorro P, Ortiz A, Cerdá A (1993) Effects of saline stress and calcium on lipid composition in bean roots. Phytochemistry32: 1131–1136.

    Article  CAS  Google Scholar 

  • Carvajal M, Cerdá A, Martínez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity?. New Phytol145: 439–447.

    Article  CAS  Google Scholar 

  • Carvajal M, del Amor F, Fernández-Ballester C, Martinez V, Cerdá A (1998) Time course of solute accumulation and water relations in muskmelon plants exposed to salt during different growth stages. Plant Sci138: 103–112.

    Article  CAS  Google Scholar 

  • Cramer GR, Epstein E, Laüchli A (1988) Kinetics of root elongation of maize in response to short-term exposure to NaCI and elevated calcium-concentration. J Exp Bot39: 1513–1522.

    Article  CAS  Google Scholar 

  • Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCI and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton. Plart Physiol81: 792–797.

    Article  CAS  Google Scholar 

  • Cramer GR, Lauchli A, Polito VS (1985) Displacement of Ca2- by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol79: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Demel RA, De Kruijff B (1976) The function of sterols in membranes. Biochim Biophys Acta457: 109–132.

    PubMed  CAS  Google Scholar 

  • Dennis EA, Kennedy EP (1970) Phosphatidylserine inTetrahymena pyriformis. J Lipid Res11: 394–403.

    PubMed  CAS  Google Scholar 

  • Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes,. Biochemistry30: 1163–1173.

    Article  PubMed  CAS  Google Scholar 

  • Ekerdt R, Papahadjopoulos D (1982) Intermembrane contact affects calcium binding to phospholipid vesicles. Proc Natl Acad Sci USA79: 2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • Evlagon D, Ravina Y, Neumann PM (1990) Interactive effects of salinity and calcium on hydraulic conductivity, osmotic adjustment and growth in primary roots of maize seedlings. Israel J Bot39: 239–247.

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-Mineral nutrient relations in horticultural crops. Sci Hortic-Amsterdam78: 127–157.

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non halophytes. Ann Rev Plant Physiol31: 61–69.

    Google Scholar 

  • Hanson JB (1984) The function of calcium in plant nutrition, In: Advances in Plant Nutrition (Eds Tinker PB, Lauchli A), Praeger, New York, pp. 149–208.

    Google Scholar 

  • Hauser H, Darke A, Phillips MC (1976) Ion-binding to phospholipids. Interaction of calcium with phosphatidylserine. Eur J Biochem62: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Hawrot E, Kennedy EP (1978) Phospholipid composition and membrane function in phosphatidylserine decarboxylase mutants ofEscherichia coli. J Biol Chem253: 8213–8220.

    PubMed  CAS  Google Scholar 

  • Holmberg N, Harker M, Gibbard CL, Wallace AD, Clayton JC, Rawlins S, Hellyer A, Safford R (2002) Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. Plant Physiol130: 1–9.

    Article  Google Scholar 

  • Holwerda DL, Ellis PD, Wuthier RE (1981) Carbon-13 and phosphorus-31 nuclear magnetic resonance studies on interaction of calcium with phosphatidylserine. Biochemistry.20: 418–23.

    Article  PubMed  CAS  Google Scholar 

  • Kaya C, Kirnak H, Higgs D, Saltali K (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci Hortic-Amsterdam93: 65–74.

    Article  CAS  Google Scholar 

  • Kowluru A, Rana RS, MacDonnald MJ (1985) Phospholipid methyltransferase activity in pancreatic islets: Activation by calcium. Arch Biochem Biophys242: 72–81.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper PJC (1985) Environmental changes and lipid composition of higher plants. Physiol Plant64: 118–122.

    Article  CAS  Google Scholar 

  • Lacan D, Durand M (1995) Na- and K+ transport in soybean roots. Physiol Plant93: 132–138.

    Article  CAS  Google Scholar 

  • Larsson C, Widell S, Kjellbom P (1987) Preparation of high-purity plasma membranes. Method Enzymol148: 558–568.

    Article  CAS  Google Scholar 

  • Liljenberg CS (1992) The effects of water deficit stress on plant membrane lipids. Prog Lipid Res31: 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Lynch J, Laüchli A (1985) Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytol99: 345–354.

    Article  CAS  Google Scholar 

  • Martínez-Ballesta MC, Aparicio F, Pallas V, Martínez V, Carvajal M (2003) Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J Plant Physiol160: 689–697.

    Article  PubMed  Google Scholar 

  • Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta1663: 19–51.

    Article  PubMed  CAS  Google Scholar 

  • Navarro JM, Martínez V, Carvajal M (2000) Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci157: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Nes ND (2000) Sterol methyl transferase: enzymology and inhibition. Biochim Biophys Acta1529: 63–88.

    PubMed  CAS  Google Scholar 

  • Norberg P, Lijenberg C (1991) Lipids of plasma membranes prepared from oat cells. Plant Physiol96: 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien I, Reutelingsperger C, Holdaway K (1997) Annexin-V and TUNEL Use in Monitoring the Progression of Apoptosis in Plants. Cytometry29: 28–33.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz A, Martínez V, Cerdá A (1994) Short-Term effects of osmotic shock and calcium on growth and solute composition ofPhaseolus vulgaris L plants. Physiol Plant911: 468–476.

    Article  Google Scholar 

  • Picchioni GA, Watada AE, Conway WS, Whitaker BD, Sams CE (1998) Postharvest calcium infiltration delays membrane lipid catabolism in apple fruit. J Agr Food Chem46: 2452–2457.

    Article  CAS  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ15: 625–632.

    Article  CAS  Google Scholar 

  • Schaller H, Bouvier-Navé P, Benvenist P (1998) Overexpression of an Arabidopsis cDNA encoding a sterol-C24-1-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction. Plant Physiol118: 461–469.

    Article  PubMed  CAS  Google Scholar 

  • Schroit AJ, Zwaal RF (1991) Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta1071: 313–329.

    PubMed  CAS  Google Scholar 

  • Schuler I, Duportail C, Glasser NA, Benveniste P, Hartmann M (1990) Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study. Biochim Biophys Acta1028: 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Schuler I, Milon A, Nakatani Y, Ourisson C, Albrecht A, Benveniste P, Hartmann M (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc Nat Acad Sci USA88: 6926–6930.

    Article  PubMed  CAS  Google Scholar 

  • Sum AK (2005) Molecular simulation study of the influence of small molecules on the dynamic and structural properties of phospholipids bilayers. Chem Biodivers2: 1503–1516.

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, Kasamo K (2001) Transmembrane topography of plasma membrane constituents bean (Vigna radiata L.) hypocotyl cells I. Transmembrane distribution of phospholipids. Biochim Biophys Acta1513: 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Yale J, Bohnert HJ (2001) Transcript expression inSaccharomyces cerevisiae at high salinity. J Biol Chem276: 15996–16007.

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J294: 1–14.

    PubMed  CAS  Google Scholar 

  • Zampighi GA, Kreman M, Lanzavecchia S, Turk E, Eskandari S, Zampighi L, Wright EM (2003) Structure of functional single AQPO channels in phospholipid membranes. J Mol Biol325: 201–210.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Carvajal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, C., Aranda, F.J., Ortiz, A. et al. Root Plasma Membrane Lipid Changes in Relation to Water Transport in Pepper: a Response to NaCl and CaCl2 Treatment. J. Plant Biol. 50, 650–657 (2007). https://doi.org/10.1007/BF03030609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030609

Key words

Navigation