Skip to main content
Log in

Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The development of apoplastic barriers was studied in Zea mays seedling roots grown in hydroculture solution supplemented with 0–200 mM NaCl or 20 % polyethylene glycol (PEG). Casparian bands in the endodermis of both NaCl- and PEG-treated roots were observed closer to the root tip in comparison with those of control roots, but the cell wall modifications in the endodermis and exodermis induced by salt and osmotic stresses differed. High salinity induced the formation of a multiseriate exodermis, which ranged from several cell layers to the entire cortex tissue but did not noticeably influence cell wall suberization in the endodermis. In contrast, osmotic stress accelerated suberization in both the endodermis and exodermis, but the exodermis induced by osmotic stress was limited to several cell layers in the outer cortex adjacent to the epidermis. The hydrostatic hydraulic conductivity (L p) had decreased significantly after 1 day of PEG treatment, whereas in NaCl-treated roots, L p decreased to a similar level after 5 days of treatment. Peroxidase activity in the roots increased significantly in response to NaCl and PEG treatments. These data indicate that salt stress and osmotic stress have different effects on the development of apoplastic barriers and water transport in Z. mays seedling roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bernards MA, Lewis GL (1998) The macromoecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Gerrish C, Salaun JP (1997) Changes in enzymes involved in suberisation in elicitor-treated French bean cells. Phytochemistry 45:1351–1357

    Article  CAS  Google Scholar 

  • Bonnett HT (1967) The root endodermis: fine structure and function. J Cell Biol 37:199–205

    Article  Google Scholar 

  • Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133–142

    Article  Google Scholar 

  • Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi AA, Sulpice R (2011) Salt induced accumulation of glycine betaine is inhibited by high light in Durum wheat. Funct Plant Physiol 38:139–150

    Article  CAS  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

  • Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    Article  CAS  PubMed  Google Scholar 

  • Frensch J, Hsiao TC, Steudle E (1996) Water and solute transport along developing maize root. Planta 198:348–355

    Article  Google Scholar 

  • Geldner N (2013) The endodermis. Ann Rev Plant Biol 64:531–558

    Article  CAS  Google Scholar 

  • Haas DL, Carothers ZB (1975) Some ultrastructural observations on endodermal cell development in Zea mays roots. Amer J Bot 62:336–348

    Article  Google Scholar 

  • Halpin C (2013) Cell biology: up against the wall. Curr Biol 23:R1048–R1050

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. University of California 347: 1-39

  • Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347–2360

    Article  PubMed Central  PubMed  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Karahara I, Ikeda A, Kondo T (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219:41–47

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230:119–134

    Article  CAS  PubMed  Google Scholar 

  • Kroemer K (1903) Wurzelhaut. Hypodermis und Endodermis der Angiospermenwurzel. Bibl Bot 12:1–160

    Google Scholar 

  • Lee Y, Rubio MC, Alassimone J, Geldner N (2013) A mechanism for localized lignin deposition in the endodermis. Cell 153:402–412

    Article  CAS  PubMed  Google Scholar 

  • Martinka M, Dolan L, Pemas M, Abe J, Lux A (2012) Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Ann Bot 110:361–371

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Lafitte R (2001) Regulation of growth, development and whole organism physiology. Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1845

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2011) Plant adaptations to salt and water stress: differences and commonalities. Adv Bot Res 57:1–32

  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. PNAS 109:10101–10106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negrel J, Javelle F, Paynot M (1993) Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. J Plant Physiol 142:518

    Article  CAS  Google Scholar 

  • Peterson CA, Enstone DE (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol Plant 97:592–598

    Article  CAS  Google Scholar 

  • Peterson CA, Steudle E (1993) Lateral hydraulic conductivity of early metaxylem vessels in Zea mays L. roots. Planta 189:288–297

    Article  Google Scholar 

  • Peterson CA, Murrmann M, Steudle E (1993) Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190:127–136

    Article  CAS  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhardt DH, Rost TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574

    Article  CAS  Google Scholar 

  • Robards AW, Jackson SM (1975) Root structure and function an integrated approach. In: Sunderland N (ed) Perspectives in experimental biology, vol. 2. Pergamon Press, Oxford, pp 413–422

    Google Scholar 

  • Ros-Barcelo A, Pomar F, Lopez-Serrano M, Martinez P, Pedreno MA (2002) Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. Plant Physiol Biochem 40:325–332

    Article  CAS  Google Scholar 

  • Sancho MA, Milrad de Forchetii, Pliego F, Valpuesta V, Quesada MA (1996) Total peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell Tissue Org Cult 44:161–167

    Article  CAS  Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apolastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280

    CAS  Google Scholar 

  • Schreiber L, Franke R, Hartmann KD, Ranathunge K, Steudle E (2005) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot 56:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837

    Article  CAS  Google Scholar 

  • Simone OD, Haase K, Müller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W (2003) Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in root from four amazonian tree species. Plant Physiol 132:206–217

    Article  PubMed Central  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Thomas R, Fang X, Ranathunge K, Anderson TR (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Physiol 144:299–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Walker RR, Sedgley M, Blesing MA, Douglas TJ (1984) Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion. J Exp Bot 35:1481–1494

    Article  CAS  Google Scholar 

  • Wilcox H (1954) Primary organization of active and dormant roots of noble fir, Abies procera. Amer J Bot 41:812–821

    Article  Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206:7–19

    Article  CAS  Google Scholar 

  • Zimmermann HM, Hartmann K, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 210:302–311

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Mr. Xin Yu for the measurement of hydraulic conductivity and Mr. Xiao-Yan Gao for helping on microscope analysis. This paper was supported by the National Basic Research Program of China (2011CB710902), the China Manned Space Flight Technology Project, and the Strategic Pioneer Projects of CAS (XDA04020202).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Qiong Zheng.

Additional information

Handling Editor: Néstor Carrillo

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen\, J., Xu, G. & Zheng, H.Q. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses. Protoplasma 252, 173–180 (2015). https://doi.org/10.1007/s00709-014-0669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0669-1

Keywords

Navigation