Skip to main content
Log in

Microwave heated reaction-bonded silicon nitride using an inverse temperature gradient

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The nitridation behavior of Si under a microwave-heating source was studied. Si preforms were produced via an aqueous gel-casting route with 45 vol.% solids loading. Preforms up to 10 mm thick could be produced without cracking. Microwave nitridation of the Si preforms was carried out using a fiberboard insulation box without packing powders in order to cause an inverse temperature gradient. Nitridation began at the unusually low temperature of 950°C. Up to 74% nitridation was achieved by nitriding at 1120°C for 5 hr. Preforms displayed an inverse temperature gradient, with sintering and melting occurring in the center of the preforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Smyth,Ceramics and Glasses Engineered Materials Handbook (ed., S. J. Schneider), vol. 4, p. 905, ASM Int., Metals Park, OH (1991).

    Google Scholar 

  2. J. J. Thomas, R. J. Christensen, D. I. Johnson, and H. M. Jennings,J. Am. Ceram. Soc. 76, 1384 (1993).

    Article  CAS  Google Scholar 

  3. A. Atkinson and A. J. MoulsonScience of Ceramics 8, 11 (1976).

    Google Scholar 

  4. T. N. Tiegs, J. O. Kiggans, and H. D. KimreyMicrowave Processing of Materials II (eds., W. H. Sutton, M. H. Brooks, and I. J. Chabinsky), p. 267, MRS, Pittsburgh, PA (1990).

    Google Scholar 

  5. J. O. Kiggans, C. R. Hubbard, R. R. Steele, H. D. Kimrey, C. E. Holcombe, and T. N. Tiegs,Ceramic Transactions Vol. 21: Microwaves, Theory, and Applications in Materials Processing (eds., D. E. Clark, F. D. Gac, and W. H. Sutton), p. 665, Am. Ceram. Soc., Westerville, Ohio (1991).

    Google Scholar 

  6. A. C. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer,J. Am. Ceram. Soc. 74, 612 (1991).

    Article  CAS  Google Scholar 

  7. J. P. Maria, J. O. Kiggans, T. N. Tiegs, and S. D. Nunn,Ceram. Eng. Sci. Proc. 16, 1071 (1995).

    Article  CAS  Google Scholar 

  8. G. Ziegler, J. Heinrich, and G. WöttingJ. Mater. Sci. 22, 3041 (1987).

    Article  ADS  CAS  Google Scholar 

  9. A. J. MoulsonJ. Mater. Sci. 14, 1017 (1979).

    Article  ADS  CAS  Google Scholar 

  10. M. Barsoum, P. Kangutkar, and M. J. KoczakJ. Am. Ceram. Soc. 74, 1248 (1991).

    Article  CAS  Google Scholar 

  11. M. C. L. Patterson, P. S. Apte, R. M. Kimber, and R. Roy,Mater. Res. Soc. Symp. Proc. 269, 291 (1992).

    CAS  Google Scholar 

  12. H. M. Jennings and M. H. RichmanJ. Mater. Sci. 11, 2087 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Microwave Processing of Materials, p. 88. Nat’l Materials Advisory Board Commission on Engineering and Technical Systems, Nat’l Research Council Publication NMAB-473, Nat’l Academy Press, Washington DC (1994).

  14. J. J. Thomas, D. J. Skamser, H. M. Jennings, and D. L. Johnson,J. Am. Ceram. Soc. 79, 2358–68 (1996).

    Article  Google Scholar 

  15. P. Arundale and A. J. MoulsonJ. Mater. Sci. Lett. 12, 2138 (1977).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, J.G., Bai, K., Woo, S.K. et al. Microwave heated reaction-bonded silicon nitride using an inverse temperature gradient. Met. Mater. Int. 9, 187–191 (2003). https://doi.org/10.1007/BF03027276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027276

Keywords

Navigation