Skip to main content
Log in

Decolorization of dye and molasses by continuous and semi-continuous jar-fermentor cultures ofGeotrichum candidum Dec 1

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Two culture modes, continuous and semi-continuous, of the decolorization fungus,Geotrichum candidum Dec 1, were compared to obtain a high treatment efficiency of molasses decolorization and a large productivity of peroxidase (DyP) to simultaneously decolorize dyes and molasses. The continuous culture ofG. candidum Dec 1 using a 5-l jar-fermentor showed high DyP activity at a low dilution ratio of 0.005h−1, and decolorization ratio of molasses of 80% was obtained concomitantly. Therefore, a semi-continuous culture was performed by repeated refill and draw. In this mode, approximately 1.5 liters of the culture broth was replaced per cycle when the decolorization ratio of molasses was near 80%. The molasses medium (1.0 liter per day) was treated and the peroxidase productivity in the drawn culture broth was 26.6 U/day, whereas the peroxidase productivity was 17.9 U/day in the continuous culture with a dilution rate of 0.005 h−1. The semi-continuous treatment system was an efficient decolorization method for the strain,G. candidum Dec 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S. J., K. Ishikawa, M. Hirai, and M. Shoda (1995) Characteristics of a newly isolated fungus,Geotrichum candidum Dec I, which decolorizes various dyes.J. Ferment. Bioeng. 79: 601–607.

    Article  CAS  Google Scholar 

  2. Kim, S. J., and M. Shoda (1999) Burification and characterization of a novel peroxidase fromGeotrichum candidum Dec 1 involved in decolorization of dyes.Appl. Environ. Microbiol. 65: 1029–1035.

    CAS  Google Scholar 

  3. Kim, S. J., N. Suzuki, Y. Uematsu, and M. Shoda (2001) Characterization of aryl alcohol oxidase produced by dyedecolorizing fungus,Geotrichum candidum Dec 1.J. Biosci. Bioeng. 91: 166–172.

    Article  CAS  Google Scholar 

  4. Kim, S. J., and M. Shoda (1999) Decolorization of molasses and a dye by a newly isolated strain of the fungusGeotrichum candidum Dec 1.Biotechnol. Bioeng. 62: 114–119.

    Article  CAS  Google Scholar 

  5. Kim, S. J., and M. Shoda (1998) Decolorization of molasses by a new isolate ofGeotrichum candidum in a jar fermenter.Biotechnol. Tech. 12: 497–499.

    Article  CAS  Google Scholar 

  6. Perie, F. H., and M. H. Gold (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungusDichomitus squalens.Appl. Environ. Microbiol. 57: 2240–2245.

    CAS  Google Scholar 

  7. Sayadi, S., and R. Ellouz (1995) Roles of lignin peroxidase and manganese peroxidase fromPhanerochaete chrysosporium in the decolorization of olive mill wastewaters.Appl. Environ. Microbiol. 61: 1098–1103.

    CAS  Google Scholar 

  8. Goszczynski, S., A. Paszczynski, M. B. Pasti-Grigsby, R. L. Crawford, and D. L. Crawford (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases ofPhanerochaete chrysosporium andStreptomyces chromofuscus.J. Bacteriol. 176: 1339–1347.

    CAS  Google Scholar 

  9. Chivukula, M., and V. Renganathan (1995) Phenolic azo dye oxidation by laccase fromPyricularia oryzae.Appl. Environ. Microbiol. 61: 4374–4377.

    CAS  Google Scholar 

  10. Woo, S. H., J. S. Cho, B. S. Lee, and E. K. Kim (2004) Decolorization of melanin by lignin peroxidase fromPhanerochaete chrysosporium.Biotechnol. Bioprocess Eng. 9: 256–260.

    Article  CAS  Google Scholar 

  11. Venkatadri, R., and R. L. Irvine (1990) Effect of agitation on ligninase activity and ligninase production byPhanerochaete chrysosporium.Appl. Environ. Microbiol. 56: 2684–2691.

    CAS  Google Scholar 

  12. Kirkpatrick, N., and J. M. Palmer (1987) Semi-continuous ligninase production using foam-immobilisedPhanerochaete chrysosporium.Appl. Microbiol. Biotechnol. 27: 129–133.

    Article  CAS  Google Scholar 

  13. Linko, S. (1988) Continuous production of lignin peroxidase by immobilizedPhanerochaete chrysosporium in a pilot scale bioreactor.J. Biotechnol. 8: 163–170.

    Article  CAS  Google Scholar 

  14. Pallerla, S., and R. P. Chambers (1995) Continuous decolorization and AOX reduction of bleach plant effluents by free and immobilizedTrametes versicolor.J. Environ. Sci. Health. A30: 423–437.

    Article  Google Scholar 

  15. Bonnarme, P., M. Delattre, H. Drouet, G. Corrieu, and M. Asther (1993) Toward a control of lignin and nanganese peroxidases hypersecretion byPhanerochaete chrysosporium in agitated vessels: Evidence of the superiority of pneumatic bioreactors on mechanically agitated bioreactors.Biotechnol. Bioeng. 41: 440–450.

    Article  CAS  Google Scholar 

  16. Leisola, M. S. A., U. Thanei-Wyss, and A. Fiechter (1985) Strategies for production of high ligninase activities byPhanerochaete chrysosporium.J. Biotechnol. 3: 97–100.

    Article  CAS  Google Scholar 

  17. Bonnarme, P., M. Delattre, G. Corrieu, and M. Asther (1991) Peroxidase secretion by pellets or immobilized cells ofPhanerochaete chrysosporium BKM-F-1767 and INA-12 in relation to organelle content.Enzyme Microb. Technol. 13: 727–733.

    Article  CAS  Google Scholar 

  18. Leisola, M. S. A., and A. Fiechter (1985) New trend in lignin biodegradation.Adv. Biotechnol. Proc. 5: 59–89.

    CAS  Google Scholar 

  19. Pinelli, D., R. A. Gonzalez-Varay, D. Matteuzzi, and E. Magelli (1997) Assessment of kinetic models for the production of L- and D-lactic acid isomers byLactobacillus casei DMS 20011 andLactobacillus coryniformis DMS 2004 in continuous fermentation.J. Ferment. Bioeng. 83: 209–212.

    Article  CAS  Google Scholar 

  20. Kirkpatrick, N., and J. M. Palmer (1989) A natural inhibitor of lignin peroxidase activity fromPhanerochaete chrysosporium, active at low pH and inactivated by divalent metal ions.Appl. Microbiol. Biotechnol. 30: 305–311.

    Article  CAS  Google Scholar 

  21. Wittier, R., H. Baumgartl, D. W. Lübbers, and K. Schügerl (1986) Investigation of oxygen transfer intoPenicillium chrysogenum pellets by microprobe measurements.Biotechnol. Bioeng. 28: 1024–1036.

    Article  CAS  Google Scholar 

  22. Linko, Y.-Y., M. Leisola, N. Lindholm, J. Trolle, P. Linko, and A. Fiechter (1986) Continuous production of lignin peroxidase byPhanerochaete chrysosporium.J. Biotechnol. 4: 283–291.

    Article  CAS  Google Scholar 

  23. Linko, S. (1988) Production and characterization of extracellular lignin peroxidase from immobilizedPhanerochaete chrysosporium in a 10-1 bioreactor.Enzyme Microb. Technol. 10: 410–417.

    Article  CAS  Google Scholar 

  24. Capdevila, C., G. Corrieu, and M. Asther (1989) A feed-harvest culturing method to improve lignin peroxidase byPhanerochaete chrysosporium INA-12 immobilized on polyurethane foam.J. Ferment. Bioeng. 68: 60–63.

    Article  CAS  Google Scholar 

  25. Ryu, B. H. (2004) Semicontinuous decolorization of azo dyes by rotating dise contactor immobilized withAspergillus sojae B-10.Biotechnol. Bioprocess Eng. 9: 309–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J., Kim, M.J. & Shoda, M. Decolorization of dye and molasses by continuous and semi-continuous jar-fermentor cultures ofGeotrichum candidum Dec 1. Biotechnol. Bioprocess Eng. 11, 306–312 (2006). https://doi.org/10.1007/BF03026245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026245

Keywords

Navigation