Skip to main content
Log in

Asymmetric synthesis of unnaturall-amino acids using thermophilic aromaticl-amino acid transaminase

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Aromaticl-amino acid transaminase is an enzyme that is able to transfer the amino group froml-glutamate to unnatural aromatic α-keto acids to generate α-ketoglutarate and unnatural aromaticl-amino acids, respectively. Enrichment culture was used to isolate thermophilicBacillus sp. T30 expressing this enzyme for use in the synthesis of unnaturall-amino acids. The asymmetric syntheses ofl-homophenylalanine andl-phenylglycine resulted in conversion yields of >95% and >93% from 150 mM 2-oxo-4-phenylbutyrate and phenylglyoxylate, respectively, usingl-glutamate as an amino donor at 60°C. Synthesizedl-homophenylalanine andl-phenylglycine were optically pure (>99% enantiomeric excess) and continuously pre-cipitated in the reaction solution due to their low solubility at the given reaction pH. While the solubility of the α-keto acid substrates is dependent on temperature, the solubility of the unnaturall-amino acid products is dependent on the reaction pH. As the solubility difference between substrate and product at the given reaction pH is therefore larger at higher temperature, the thermophilic transaminase was successfully used to shift the reaction equilibrium toward rapid product formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases.Trends Biotechnol. 16: 412–418.

    Article  CAS  Google Scholar 

  2. Park, H. G., J. H. Do, and H. N. Chang (2003) Regioselective enzymatic acylation of multi-hydroxyl compounds in organic synthesis.Biotechnol. Bioprocess Eng. 8: 1–8.

    Article  CAS  Google Scholar 

  3. Krapcho, J., C. Turk, D. W. Cushman, J. R. Powell, J. M. Deforrest, E. R. Spitzmiller, D. S. Karanewsky, M. Duggan, G. Rovansak, J. Schwartz, S. Natarajan, J. D. Godfrey, D. E. Ryono, R. Neubeck, K. S. Atwal, and E. W. Petrillo (1988) Angiotensin-converting enzyme inhibitors. Mercaptan, carboxyalkyl dipeptide, and phosphinic acid inhibitors incorporating 4-substituted prolines.J. Med. Chem. 31: 1148–1160.

    Article  CAS  Google Scholar 

  4. Lesson, P. A., X. Rabasseda, and J. Castaner (1997) FK-888.Drugs Future 22: 353–358.

    Google Scholar 

  5. Ager, D. J., I. G. Fotheringham, S. A. Laneman, D. P. Pantaleone, and P. P. Taylor (1997) The large scale synthesis of unnatural amino acids.Chim. Oggi. 15: 11–14.

    CAS  Google Scholar 

  6. Cho, B.-K., H. J. Cho, S.-H. Park, H. Yun, and B.-G. Kim (2003) Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions.Biotechnol. Bioeng. 81: 785–789.

    Article  Google Scholar 

  7. Schulz, A., P. Taggeselle, D. Tripier, and K. Bartsch (1990) Stereospecific production of the herbicide phophinothricin (glufosinate) by transamination: isolation and characterization of a phosphinothricin-specific transaminase fromEscherichia coli.Appl. Environ. Microbiol. 56: 1–6.

    CAS  Google Scholar 

  8. Meiwes, J., M. Schudok, and G. Kretzschmar (1997) Asymmetric synthesis ofl-thienylalanines.Tetrahedron Asym. 8: 827–836.

    Article  Google Scholar 

  9. Asano, Y., A. Yamada, Y. Kato, K. Yamaguchi, Y. Hibino, K. Hirai, and K. Kondo (1990) Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase fromBacillus sphaericus: use of natural and recombinant enzymes.J. Org. Chem. 55: 5567–5571.

    Article  CAS  Google Scholar 

  10. Xu, Q., G. Wang, X. Wang, T. Wu, X. Pan, A. S. C. Chan, and T. K. Yang (2000) The synthesis of L-(+)-homophenylalanine hydrochloride.Tetrahedron Asym. 11: 2309–2314.

    Article  CAS  Google Scholar 

  11. Yang, Y. J., C. H. Lee, and Y. M. Koo (2004) Separation of amino acids by simulated moving bed using competitive Langmuir isotherm.Biotechnol. Bioprocess Eng. 9: 331–338.

    Article  CAS  Google Scholar 

  12. Ahn, J., J. Ryu, H. Jang, and J.-K. Jung (2004) Effect of growth rate on the production ofl-proline in the fed-batch culture ofCorynebacterium acetoacidophilum.Biotechnol. Bioprocess Eng. 9: 326–329.

    Article  CAS  Google Scholar 

  13. Syldatk, C., D. Völkel, U. Bilitewski, K. Krohn, H. Höke, and F. Wagner (1992) Biotechnological production of unnaturall-amino acids fromD,L-5-monosubstituted hydantions. II.l-α- andl-β-naphthylalanine.Biotechnol. Lett. 14: 105–110.

    Article  CAS  Google Scholar 

  14. Cooper, A. J. L., J. Z. Ginos, and A. Meister (1983) Synthesis and properties of the β-keto acids.Chem. Rev. 83: 321–358.

    Article  CAS  Google Scholar 

  15. Cho, B. K., J. H. Seo, T. W. Kang, and B. G. Kim (2003) Asymmetric synthesis ofl-homophenylalanine by equilibrium-shift using recombinant aromaticl-amino acid transaminase.Biotechnol. Bioeng. 83: 226–234.

    Article  CAS  Google Scholar 

  16. Shin, J.-S., and B.-G. Kim (2002) Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: How the enzyme controls substrate specificity and stereoselectivity.J. Org. Chem. 67: 2848–2853.

    Article  CAS  Google Scholar 

  17. Peisach, D., D. M. Chipman, P. W. Van Ophem, J. M. Manning, and D. Ringe (1998) Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.Biochemistry 37: 4958–4967.

    Article  CAS  Google Scholar 

  18. Stewart, J. D. (2001) Dehydrogenases and transaminases in asymmetric synthesis.Curr. Opin. Chem. Biol. 5: 120–129.

    Article  CAS  Google Scholar 

  19. Chao, Y. P., Z. J. Lai, P. Chen, and J. T. Chern (1999) Enhanced conversion rate ofl-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase inEscherichia coli K-12.Biotechnol. Prog. 15: 453–458.

    Article  CAS  Google Scholar 

  20. Fotheringham, I. G., N. Grinter, D. P. Pantaleone, R. F. Senkpeil, and P. P. Taylor (1999) Engineering of a novel biochemical pathway for the biosynthesis ofl-2-aminobutyric acid inEscherichia coli K-12.Bioorg Med. Chem. 7: 2209–2213.

    Article  CAS  Google Scholar 

  21. Cho, B.-K., H. J. Cho, H. Yun, and B.-G. Kim (2003) Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using α/β-amino transferase coupling reactions with two-liquid phase reaction system.J. Mol. Catal., B Enzym. 26: 273–285.

    Article  CAS  Google Scholar 

  22. Lo, H.-H., S.-K. Hsu, W.-D. Lin, N.-L. Chan, and W.-H. Hsu (2003) Asymmetrical synthesis ofl-homophenylalanine using engineeredEscherichia coli aspartate aminotransferase.Biotechnol. Prog. 21: 411–415.

    Article  Google Scholar 

  23. Twomey, C. M. and S. Doonan (1997) A comparative study of the thermal inactivation of cytosol and mitochondrial aspartate aminotransferase.Biochim. Biophys. Acta 1342: 37–44.

    CAS  Google Scholar 

  24. Zale, S. E., and A. M. Klibanov (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes.Biotechnol. Bioeng. 25: 2221–2230.

    Article  CAS  Google Scholar 

  25. Cho, B.-K., H.-Y. Park, J.-H. Seo, K. Kinnera, B.-S. Lee, and B.-G. Kim (2004) Enzymatic resolution for the preparation of enantiomerically enriched D-β-heterocyclic alanine derivatives usingEscherichia coli aromaticl-amino acid transaminase.Biotechnol. Bioeng. 88: 512–519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, BK., Seo, JH., Kim, J. et al. Asymmetric synthesis of unnaturall-amino acids using thermophilic aromaticl-amino acid transaminase. Biotechnol. Bioprocess Eng. 11, 299–305 (2006). https://doi.org/10.1007/BF03026244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026244

Keywords

Navigation