Skip to main content
Log in

Effect of strain rate on the mechanical response of a Ti3Al-Nb-Mo alloy

  • Published:
Metals and Materials Aims and scope Submit manuscript

Abstract

In this study, the effect of strain rate and temperature on the substructure evolution and mechanical response of a Ti3Al-Nb-Mo alloy (Ti-24.5Al-10.5Nb-l.5Mo) was investigated. The yield and flow stresses were found to decrease gradually with increasing temperature at the strain rate of 3000 s1 and no flow stress/temperature anomaly was observed. The variation of hardening behavior of Ti-24.5Al-10.5Nb-1.5Mo alloy with temperature and strain rate was found to be negligible, implying that the dynamic recovery mechanism for this alloy is rather athermal. Dynamic recovery of Ti-24.5Al-10.5Nb-l.5Mo alloy is thought to be quite difficult and slow because of its complicated dislocation core structure. Ti-24.5Al-10.5Nb-l.5Mo alloy exhibited predominantly planar dislocation debris after deformation. Following the room temperature deformation at low strain rate the majority of the dislocations were a-dislocations lying on the basal and 1storder pyramidal slip planes and the 2nd-order pyramidala/2+c slip on {1211}. Increasing the rate of deformation at room temperature to 6000 s1 resulted in the increaseda-slip on prism planes and the lessor amount of basal slip. At elevated temperatures, the substructure after high rate deformation was found to be similar to that following high rate deformation at room temperature except for an increased amount of basal slip and somewhat higher incidence of the 2nd-order pyramidal slip. The evidence of an increased amount of shearing of the βo phase was observed at elevated temperature, suggesting the decreased strength of the βo phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Lipsitt, inHigh-Temperature Ordered Intermetallic Alloys, Vol. 39(eds.,.C. C. Koch, C. T. Liu, and N. S. Stoloff), p. 352, Materials Research Society, Pittsburgh, PA (1985).

    Google Scholar 

  2. R. G. Rowe, inHigh Temperature Aluminides and Intermetallics (eds., S. H. Whang, C. T. Liu, D. Pope, and J. Stiegler), p. 375, The Metallurgical Society, Warrendale, PA (1990).

    Google Scholar 

  3. J. M. Larsen, K. A. Williams, S. J. Balsone, and M. A. Stucke, —in, p. 521.

    Google Scholar 

  4. P. C. Gehlen, inThe Science, Technology, and Application of Titanium (eds., R. I. Jaffee and N. E. Promisel), p. 349, Pergamon Press, New York (1970).

    Google Scholar 

  5. S. M. L. Sastry and H. A. Lipsitt,Metall. Trans. 8A, 1543(1977).

    CAS  Google Scholar 

  6. H. A. Lipsitt, D. Schechtman. and R. E. Schafrik,Metall. Trans. 11A, 1369(1980).

    CAS  Google Scholar 

  7. S. M. L. Sastry and H. A. Lipsitt, inTitanium ’80 - Science and Technology (eds., H. Kimura and O. Izurni), p. 1231, The Metallurgical Society, Warrendale, PA (1980).

    Google Scholar 

  8. P. L. Martin, H. A. Lipsitt, N. T. Nuhfer, and J. C. Williams, —in, p. 1245.

    Google Scholar 

  9. D. A. Koss, D. Banerjee, D. A. Lukasak, and A. K. Go-gia, —in, p. 175.

    Google Scholar 

  10. S. A. Court, J. P. A. Lofvander, P. Kurath, and H. L. Frazer, inSixth World Conference on Titanium (eds., P. Lacombe, R. Tricot, and G. Beranger), p. 949, Les Editions de Physique, Paris, France (1989).

    Google Scholar 

  11. B. J. Marquardt, G. K. Scarr, J. C. Chesnutt. C. G. Rhodes, and H. L. Frazer, —in, p. 955.

    Google Scholar 

  12. Y-W. Kim and F. H. Froes, —in, p. 465.

    Google Scholar 

  13. A. K. Gogia, D. Banerjee, and T. K. Nandy,Metall. Trans. 21A, 609(1990).

    CAS  Google Scholar 

  14. D. Banerjee, A. K. Gogia, and T. K, Nandy,Metall. Trans. 21A, 627 (1990).

    CAS  Google Scholar 

  15. S. J. Gittis and D. A. Koss, inHigh-Temperature Ordered Intermetallic Alloys III, Vol. 133 (eds.,C. T. Liu, A. I. Taub, N. S. Stoloff, and C. C. Koch), p. 323, Materials Research Society, Pittsburgh, PA (1989).

    Google Scholar 

  16. D. A. Lukasak and D. A. Koss,Matall Trans. 21A, 135 (1990).

    Article  CAS  Google Scholar 

  17. G. T. Gray III and P. S. Follansbee, —in, p. 117.

    Google Scholar 

  18. P. S. Follansbee and G. T. Gray III.Metall. Trans. 20A, 863 (1989).

    CAS  Google Scholar 

  19. L. S. Harbison, R. J. Bourcier, and D. A. Koss, inMicrostructure/Property Relationships in Titanium Alloys and Titanium Aluminides (eds., Y-W. Kim and R. R. Boyer), p. 437, The Metallurgical Society, Warrendale, PA (1991).

    Google Scholar 

  20. C. E. Frantz, P. S. Follansbee, and W. J. Wright, inHigh Energy Rate Fabrication (eds., I. Berman and J. W. Schroeder), p. 229, Am. Soc. Mech. Engr., NY (1984).

    Google Scholar 

  21. H. W. Sizek and G. T. Gray III,Acta Metall Mater. 41, 1855 (1993).

    Article  CAS  Google Scholar 

  22. R. E. Schafrik,Metall. Trans. 8A, 1003 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, G.T., Hong, S.I. & Marquardt, B.J. Effect of strain rate on the mechanical response of a Ti3Al-Nb-Mo alloy. Metals and Materials 2, 31–36 (1996). https://doi.org/10.1007/BF03025944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03025944

Keywords

Navigation