Skip to main content

Advertisement

Log in

Comparison of marine insolation estimating methods in the adriatic sea

  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

We compare insolation results calculated from two well-known empirical formulas (Seckel and Beaudry’s SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W m-2 in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the ‘Sun-Earth distance factor (f)’, a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W m-2 during summer due to a decrease in thef value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison within situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almorox, J., C. HontoriaM. Benito. 2005. Statistical validation of daylength definitions for estimation of global solar radiation in Toledo, Spain.Energ. Convers. Manage.,46, 1465–1471.

    Article  Google Scholar 

  • Angelucci, M.G, N. Pinardi, and S. Castellari. 1998. Air-sea fluxes from operational analyses fields: intercomparison between ECMWF and NCEP analyses over the Mediterranean Area.Phys. Chem. Earth,23, 569–574.

    Article  Google Scholar 

  • Bird, R.E. and C. Riordan. 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and titled planes at the earth’s surface for cloudless atmospheres.J. Appl. Meteorol,25, 87–97.

    Article  Google Scholar 

  • Blanco-Muriel, M., D.C. Alarcon-Padilla, T. Lopez-Moratalla, and M. Lara-Coira. 2001. Computing the solar vector.Solar Energy,70, 431–441.

    Article  Google Scholar 

  • Bretagnon,P. and G Francou. 1988. Planetary theories in rectangular and spherical variables - VSOP87 solutions, Astron.Astroph.,202, 309–315.

    Google Scholar 

  • Byun, D.-S. and Y.-K. Cho. 2006. Estimation of the PAR irradiance ratio and its variability under clear-sky conditions at Ieodo in the East China Sea,Ocean Science Journal,41, 235–244.

    Article  Google Scholar 

  • Cardin, V. and M. Gačić. 2003. Long-term heat flux variability and winter convection in the Adriatic Sea.J. Geophys. Res.,108, C9, 8103, doi:10.1029/2002JC001645.

    Article  Google Scholar 

  • Castellari, S., N. Pinardi, and K. Leaman. 1998. A model study of air-sea interactions in the Mediterranean Sea.J. Mar. Syst.,18, 89–114.

    Article  Google Scholar 

  • Castellari, S., N. Pinardi, and K. Leaman. 2000. Simulation of water mass formation processes in the Mediterranean Sea: Influence of the time frequency of the atmospheric forcing.J. Geophys. Res.,105, 24157–24181.

    Article  Google Scholar 

  • Chiggiato, J., M. Zavatarelli, S. Castellari, and M. Deserti. 2005. Interannual variability of surface hear fluxes in the Adriatic Sea in the period 1998–2001 and comparison with observations.Sci. Total Environ.,353, 89–102.

    Article  Google Scholar 

  • Cooper, P.I. 1969. The absorption of solar radiation in solar stills.Solar Energy,12, 333–346.

    Article  Google Scholar 

  • Colijn, F. and G C. Cadée. 2003. Is phytoplankton growth in the Wadden Sea light or nitrogen limited?J. Sea Res.,49, 83–93.

    Article  Google Scholar 

  • Fouquart, Y., B. Bonnel, G Brogniez, J.C. Buriez, L. Smith, J.J. Morcrette, and A. Cerf 1987. Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part II: Broadband Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence.J. Appl. Meteorol.,26, 38–52.

    Article  Google Scholar 

  • Frouin, R., D.W. Lingner, C. Gautier, K.S. Baker, and R.C. Smith. 1989. A simple analytical formula to compute clear sky total and photo synthetically available solar irradiance at the ocean surface.J. Geophys. Res.,94, 9731–9742.

    Article  Google Scholar 

  • Frouin, R., M. Schwindling, and P.-Y Deschamps. 1996. Spectral reflectance of sea foam in the visible and near-infrared: In site measurements and remote sensing implications.J. Geophys. Res.,101, 14361–14371.

    Article  Google Scholar 

  • Garrett, C, R. Outerbridge, and K. Thompson. 1993. Interannual variability in Mediterranean Heat and Buoyancy Fluxes.J. Climate,6, 900–910.

    Article  Google Scholar 

  • GilmanC. and C. Garrett. 1994. Heat flux parameterizations for the Mediterranean Sea: The role of atmospheric aerosols and constraints from the water budget.J. Geophys. Res.,99, 5119–5134.

    Article  Google Scholar 

  • Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W. W. Broenkow. 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates.Appl. Opt.,22, 20–36.

    Article  Google Scholar 

  • Gregg, W.W. and K.L. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres.Limnol. Oceanogr.,35, 1657–1675. Gregg, W.W. 2002. A coupled ocean-atmosphere radiative model for global ocean biogeochemical models. Technical report series on global modeling and data assimilation 22, ed. by M.

    Google Scholar 

  • Suarez, NASA/TM---2002-10460, 19 p. Gueymard, C. 1994. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States.Solar Energy,53, 57–71.

  • Gueymard, C. 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance.Solar Energy,71, 325–346.

    Article  Google Scholar 

  • Gueymard, C. 2004. The sun’s total and spectral irradiance for solar energy applications and solar radiation models.Solar Energy,76, 423–453.

    Article  Google Scholar 

  • Jacovides, C.P., F.S. Tymvios, D.N. Asimakopoulos, K.M. Theofilou, and S. Pashiardes. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin.Theor. Appl. Climatol.,74, 227–233.

    Article  Google Scholar 

  • Justus, C.G. and M.V. Paris. 1985. A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere.J. Clim. Appl. Meteorol.,24, 193–205.

    Article  Google Scholar 

  • Kasten, F. and A.T. Young. 1989. Revised optical air mass tables and approximation formula.Appl. Opt.,28, 4735.

    Article  Google Scholar 

  • Leckner, B. 1978. The spectral distribution of solar radiation at the earth’s surface — Elements of a model.Solar Energy,20, 143–150.

    Article  Google Scholar 

  • List, R.J. 1958. Smithsonian Meteorological Tables. Smithsonian Inst., Washington, D.C. 527 p.

    Google Scholar 

  • Liu, C.-C., K.L. Carder, R.L. Miller, and J.E. Ivey. 2002. Fast and accurate model of underwater scalar irradiance.Appl. Opt.,41, 4962–4974.

    Article  Google Scholar 

  • Maggiore, A., M. Zavatarelli, M.G. Angelucci, and N. Pinardi. 1998. Surface heat and water fluxes in the Adriatic Sea: Seasonal and interannual variability.Phys. Chem. Earth,23, 561–567.

    Article  Google Scholar 

  • Michalsky, J.J. 1988. The Astronomical almanac’s algorithm for approximate solar position (1950–2050).Solar Energy,40, 227–235.

    Article  Google Scholar 

  • Okulov, O., H. Ohvril, and R. Kivi. 2002. Atmospheric precipitable water in Estonia, 1990–2001.Bor. Env. Res.,7, 291–300.

    Google Scholar 

  • Paltridge, G. W. and C. M. R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier Sci. 318 p.

  • Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes. Pergamon, Oxford. 330 p.

    Google Scholar 

  • Pinardi, N., I. Allen, E. Demirov, P. De Mey, G. Korres, A. Lascaratos, P-Y. Le Traon, C. Maillard, and C. Tziavos. 2003. The Mediterranean ocean forecasting system: First phase of implementation (1998–2001).Ann. Geophys.,21, 3–20.

    Article  Google Scholar 

  • Reed, R.K. 1977. On estimating insolation over the ocean.J. Phys. Oceanogr.,7, 482–485.

    Article  Google Scholar 

  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle. 1998. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere.Bull. Am. Meteorol. Soc.,79, 2101–2114.

    Article  Google Scholar 

  • Rosati, A. and K. Miyakoda. 1988. A general circulation model for upper ocean simulation.J. Phys. Oceanogr.,18,1601–1626.

    Article  Google Scholar 

  • Schiano, M.E. 1996. Insolation over the western Mediterranean Sea: A comparison of direct measurements and Reed’s formula.J. Geophys. Res.,101, 3831–3838.

    Article  Google Scholar 

  • Seckel, GR. and F.H. Beaudry. 1973. The radiation from sun and sky over the North Pacific Ocean (abstract).EOS Trans, AGV.,54,1114.

    Google Scholar 

  • Simpson, J.J. and C.A. Paulson. 1979. Mid-ocean observations of atmospheric radiation,Q.J.R. Meteor. Soc.,105, 487–502.

    Article  Google Scholar 

  • Spencer, J.W. 1971.Fourier series representation of the position of the Sun.Search 2(5), 172.

    Google Scholar 

  • Tetens, O. 1930. Über einige meteorologische Begriffe.Z. Geophys.,6, 297–309.

    Google Scholar 

  • Tragou, E. and A. Lascaratos. 2003. Role of aerosols on the Mediterranean solar radiation.J. Geophys. Res.,108, C2, 3025, doi: 10.1029/2001JC001258.

    Article  Google Scholar 

  • Van Heuklon, T.K. 1979. Estimating atmospheric ozone for solar radiation models.Solar Energy,22, 63–68.

    Article  Google Scholar 

  • Wang, X.H.2005. Circulation and heat budget of the northern Adriatic Sea (Italy) due to a Bora event in January 2001: A numerical model study.Ocean Modelling,10,253–271.

    Article  Google Scholar 

  • Wen, G, R.F. Cahalan, and B.N. Holben. 2003. Limitations of ground-based solar irradiance estimates due to atmospheric variations.J. Geophys. Res.,108, D14, 4400, doi:10.1029/ 2003JD003431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do -Seong Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, D.S., Pinardi, N. Comparison of marine insolation estimating methods in the adriatic sea. Ocean Sci. J. 42, 211–222 (2007). https://doi.org/10.1007/BF03020912

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03020912

Key words

Navigation