Skip to main content
Log in

An SIRS epidemic model on a dispersive population

  • Published:
Korean journal of computational & applied mathematics Aims and scope Submit manuscript

Abstract

The spatial spread of a disease in an SIRS epidemic model with immunity imparted by subclinical infection on a population has been considered. The incidence rate of infection and the rate of immunization are both of nonlinear type. The dynamics of the infectious disease and its endemicity in local and global sense have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Anderson and R. M. May,Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1992.

    Google Scholar 

  2. R. M. Anderson,Mathematical studies of parasitic infection and immunity, Science Vol. 264 (1994), 1884–1886.

    Article  Google Scholar 

  3. W. S. Burnside and A. W. Panton,The Theory of Equations, S. Chanda and Company Ltd, New Delhi, 1990.

    MATH  Google Scholar 

  4. V. Capasso and G. Serio,A generalization of the kermack-mckendrick deterministic epidemic model, Math. Biosci. Vol. 42 (1978) 41–61.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. M. Denn,Stability of Reaction and Transport Processes, N. J. Englewood Cliffs, Prentice Hall, 1975.

    Google Scholar 

  6. Asit K. Ghosh and P. K. Tapaswi,An SIRS epidemiological model with immunity caused by low level of infection, Cybernetica Vol. XXXVIII (1995) No. 2, 153–168.

    MathSciNet  MATH  Google Scholar 

  7. Asit K. Ghosh, J. Chattopadhyay and P. K. Tapaswi,Immunity boosted by low level of exposure to infection in an SIRS model, Ecolog. Modell. Vol. 87 (1996), 227–233.

    Article  Google Scholar 

  8. W. S. C. Gurney and R. M. Nisbet,The regulation of inhomogeneous populations, J. Theor. Biol. Vol. 52 (1975), 441–457.

    Article  Google Scholar 

  9. H. W. Hethcote, H. W. Stech and P. van den Driessche, P.,Nonlinear oscillations in epidemic models, SIAM J. Appl. Math. Vol. 40 (1981), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Lara-Ochoa and P. Bustos,Density dependent diffusional model of an infective population, BioSys. Vol. 24 (1990), 223–238.

    Article  Google Scholar 

  11. F. Lara-Ochoa and P. Bustos,A model for aggregation-dispersion dynamics of a population, BioSys. Vol. 25 (1990).

  12. W. M. Liu, S. A. Levin and Y. Iwasa,Influence of nonlinear incidence rates upon the behaviour of SIRS epidemiological models, J. Math. Biol. Vol. 23 (1986), 187–204.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. M. Liu, H. W. Hethcote and S. A. Levin,Dynamical behaviour of epidemiological models with nonlinear incidence rates, J. Math. Biol. Vol. 25 (1987), 359–380.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. D. Murray,Mathematical Biology, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  15. A. Okubo,Diffusion and Ecological problems: Mathematical Models, Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A.K., Chattopadhyay, J. & Tapaswi, P.K. An SIRS epidemic model on a dispersive population. Korean J. Comput. & Appl. Math. 7, 693–708 (2000). https://doi.org/10.1007/BF03012279

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03012279

AMS Mathematics Subject Classification

Key words and phrases

Navigation